Throughout this paper, three concepts are introduced namely stable semisimple modules, stable t-semisimple modules and strongly stable t-semisimple. Many features co-related with these concepts are presented. Also many connections between these concepts are given. Moreover several relationships between these classes of modules and other co-related classes and other related concepts are introduced.
In this work, we introduced the Jacobson radical (shortly Rad (Ș)) of the endomorphism semiring Ș = ( ), provided that is principal P.Q.- injective semimodule and some related concepts, we studied some properties and added conditions that we needed. The most prominent result is obtained in section three
-If is a principal self-generator semimodule, then (ȘȘ) = W(Ș).
Subject Classification: 16y60
A submodule N of a module M is said to be s-essential if it has nonzero intersection with any nonzero small submodule in M. In this article, we introduce and study a class of modules in which all its nonzero endomorphisms have non-s-essential kernels, named, strongly -nonsigular. We investigate some properties of strongly -nonsigular modules. Direct summand, direct sums and some connections of such modules are discussed.
The aim of this paper is introducing the concept of (ɱ,ɳ) strong full stability B-Algebra-module related to an ideal. Some properties of (ɱ,ɳ)- strong full stability B-Algebra-module related to an ideal have been studied and another characterizations have been given. The relationship of (ɱ,ɳ) strong full stability B-Algebra-module related to an ideal that states, a B- -module Ӽ is (ɱ,ɳ)- strong full stability B-Algebra-module related to an ideal , if and only if for any two ɱ-element sub-sets and of Ӽɳ, if , for each j = 1, …, ɱ, i = 1,…, ɳ and implies Ạɳ( ) Ạɳ( have been proved..
Let Q be a left Module over a ring with identity ℝ. In this paper, we introduced the concept of T-small Quasi-Dedekind Modules as follows, An R-module Q is T-small quasi-Dedekind Module if,
Let M be an R-module, where R be a commutative; ring with identity. In this paper, we defined a new kind of submodules, namely T-small quasi-Dedekind module(T-small Q-D-M) and essential T-small quasi-Dedekind module(ET-small Q-D-M). Let T be a proper submodule of an R-module M, M is called an (T-small Q-D-M) if, for all f ∊ End(M), f ≠ 0, implies
Let R be a commutative ring with unity. In this paper we introduce and study the concept of strongly essentially quasi-Dedekind module as a generalization of essentially quasiDedekind module. A unitary R-module M is called a strongly essentially quasi-Dedekind module if ( , ) 0 Hom M N M for all semiessential submodules N of M. Where a submodule N of an R-module M is called semiessential if , 0  pN for all nonzero prime submodules P of M .
An R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules
This paper generalizes and improves the results of Margenstren, by proving that the number of -practical numbers which is defined by has a lower bound in terms of . This bound is more sharper than Mangenstern bound when Further general results are given for the existence of -practical numbers, by proving that the interval contains a -practical for all
Let M is a Г-ring. In this paper the concept of orthogonal symmetric higher bi-derivations on semiprime Г-ring is presented and studied and the relations of two symmetric higher bi-derivations on Г-ring are introduced.