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 الخلاصة
Mيقال  لمققال   القعاف  لماا القمقاة  R    بأنا  ققال  سيعابر بف اذا كاا  ال    ا  ققال  ه  ا  ق ا

ف  قف بة قجقيع قبل اف لمققال  " را ذا M فا  ذا ا البقاد ناذر  ذا ا النا ل قاس الققلعالك الا   ي اي  . 

  لك سأقم ل ص ل ققلعلك  اب  حاليياة الناببة بقاييا اباد يقال  لمققال  . ف  ص ل ققلعلك التيعبر" ققتييل

M بلل سابة الاا " حن   ب  حالي  النببة بقييا كاا  ل     ققال  يباف صا ف  لفعما  فبا  ي اي   اب  ل يعال 

لمققل  قف بة قجقيع قبل ف  M هقماة قاس الخايا  . كقتفا ل  فلطل سياذ ببس ذ ه الاص ل  قس الققلعالك. 

.حلطبت له ا الن ل قس الققلعلك  

ABSTRUCT 
   An R-module M is called rationally extending if each submodule of M is rational 

in a direct summand of M. In this paper we study this class of modules which is 

contained in the class of extending modules, Also we consider the class of strongly 

quasi-monoform modules, an R-module M is called strongly quasi-monoform if 

every nonzero proper submodule of M is quasi-invertible relative to some direct 

summand of M. Conditions are investigated to identify between these classes. 

Several properties are considered for such modules. 

INTRODUCTION 
Throughout this paper R represents an associative ring with identity and 

all R-modules are unital right modules. The following are equivalent of 

a submodule N of an R-module M:(1) HomR(M/N,E(M))=0 where E(M) 

is the injective envelope of M, (2) For each submodule K of  M  with 

NKM , every R-homomorphism : K M with Nker() is trivial 

and (3) For each x , yM with x  0, x[N:y]  0 where [N:y]={rR: 

ryN }. A submodule N of an R-module is called rational in M if N 

satisfies any one of the above conditions [1],[2].It is clear that rational 

submodules are refinement of essential submodules. An R-module M is 

called monoform (some times termed strongly uniform) if each non-

zero submodule N of M is rational [3].A submodule N of an R-module 

M is called quasi-invertible if HomR(M/N, M)=0 , and the quasi-

dedekind are those in which all non-zero submodules are quasi-

invertible [4]. Clearly, every rational submodule is quasi-invertible and 

hence every monoform R-module is quasi-dedekind. 

The authors in [5] introduced relative quasi-invertible submodules. A 

proper submodule N of an R-module N is called quasi-invertible 

relative to a submodule P of M if P contains N properly and HomR(P/N, 

M)=0. An R-module M is called is called quasi-monoform if each non-

zero proper submodule of M is quasi-invertible relative to some 

submodule of M. In fact quasi-invertible submodules are quasi-

https://www.researchgate.net/publication/225219565_On_Goldman's_primary_decomposition?el=1_x_8&enrichId=rgreq-ce7287bb47c45f9b90845824abf21e6e-XXX&enrichSource=Y292ZXJQYWdlOzI5ODc4NjQxMDtBUzozNDA3MzY2MjE5ODk4OTBAMTQ1ODI0OTM0OTM5Mg==
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invertible relative to M it self. Then we have the following implications 

for modules: 

 Monoform modules  Quasi-Dedekind modules  Quasi-monoform 

modules 

The following proposition gives characterizations of relative quasi-

invertible submodules. 

Proposition (1.1) :[5] 

Let N be a submodule of an R-module M. Consider the following. 

1. N is a quasi- invertible submodule relative to a submodule P of M 

with N P. 

2. Every R-homomorphism f : P  M with f(N)=0 is trivial, 

3. For each m1P, m2M with m2  0, there exists rR such that m1 

rN and m2r  0. 

Then (3)  (2)  (1), and (2) (3) if M is injective relative to P. 

In section two, we constructed the rational closure of submodule, and 

then use it to defined rational closed submodule which is a 

generalization of closed submodule. An R-module M is extending if 

each submodule is essential in a direct summand, this equivalent to 

saying that every closed submodule of M is a direct summand. In 

section three, the rational closure (and hence the rational closed 

submodule) is the basic ideal to introduced the rationally extending 

modules which are stronger than that of extending modules. Several 

properties of rationally extending modules are investigated. 

Rational closure of submodules 

Let M be an R-module. For any submodule N of M, a closure of N in M 

is a submodule K of M which is maximal in the family of submodules H 

of M which contains N as an essential submodule. A submodule K of M 

is called closed in M if K has no proper essential extensions in M. 

Given any submodule N of M, By a complement of N in M we mean a 

submodule L of M which is maximal in the family of submodules H 

with the property NH=0. A submodule L is called complement in M, 

if there is a submodule N of M such that L is a complement of N [6]. It 

is well known that a submodule K of M is closed if and only if K is a 

complement in M. 

Let M be an R-module and let N be a submodule of M. The approach to 

rational closure of N in M that is given below is not new. The essential 

ideas of them have appeared regularly in the literature (for instance in 

[1] ). We shall do some variations or modifications on them. The 

rational extension of submodule N of M refers to any R-homomorphism 

 : N M such that (N) is rational in M. In this case, we say that  is 

rational R-monomorphism. A rational extension is called proper 

extension of N in case (N) is a proper submodule of M. 

https://www.researchgate.net/publication/225219565_On_Goldman's_primary_decomposition?el=1_x_8&enrichId=rgreq-ce7287bb47c45f9b90845824abf21e6e-XXX&enrichSource=Y292ZXJQYWdlOzI5ODc4NjQxMDtBUzozNDA3MzY2MjE5ODk4OTBAMTQ1ODI0OTM0OTM5Mg==
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Let M be an R-module and let N be a submodule of M. Set T = 

EndR(E(M)) and S=HomR(E(N)M,E(M)). Then S is the left ideal of a 

ring T. In general, E(N) may not be contained in E(M), but E(M) 

contains a copy of E(N). Thus it may be happen that E(N) has no non-

zero elements in common with M, in this case we utilities the 

isomorphic copy W say of E(N). As E(M) is essential extension of M, 

hence W  M  0. Therefore without loss of generality if we assume 

E(N)  M is non-zero. Now, we formulate the following: 

Define RC(N) =


 )ker(  where the intersection runs over all 

elements  in S with N ker(). It is clear that N RC(N). 

 

The following gives some properties of  RC(N). 

 

Theorem (2.1): Let M, N, T and S as above. Then: 

(a). N is a rational submodule of RC(N), and all submodules of E(N)  

M which are rational extensions of N are contained in RC(N), 

(b). If N is a rational submodule of B, then the intersection map N  

RC(N) extends to R-monomorphism B  RC(N), 

(c). RC(N) has no proper rational extension. 

Proof:  

(a). Let N  P RC(N) and f :P  RC(N) be an R-homomorphism with 

N  ker(f). Then )(: NEPfi  where I is the inclusion map of RC(N) 

into E(N). fi   can be extending to gS with N  ker(g). By definition, 

RC(N)  ker(g) and hence f(P) = g(P) = 0. Thus N is rational in RC(N). 

Now, let K be a rational extension of N in E(N)  M and consider S 

with N ker(). Put )(1 KKK   , then KKN  , hence  restricts 

to an R-homomorphism KK  : with  = 0. As N is rational in K, 

then  = 0. Thus K  (K) = )(K  =0. But K is essential in E(N), and 

hence K is essential in E(N)  M. Thus (K) =0 and this implies that K 

 RC(N). 

 (b). The inclusion map i : N E(N) can be extended to an R-

homomorphism f : B  E(N). Since N is rational in B, then N is 

essential in B. This implies that f is an R-monomorphism. Not that N  

f(N) which is rational in f(B), then by part (a), f(B)  RC(N) and hence 

f : B  RC(N). 

(c). Let  : RC(N)  C be a rational R-monomorphism. Then (N) is 

rational in C and hence (N) is essential in C. Thus the isomorphism  : 

(N)  N extends to an R-monomorphism  : C  E(N). Since N = 

(N) is rational in (C), then by part (a), (C)  RC(N). Thus : C 

 C and we note that (-1) (N) =0. Since (N) is rational in C, this 
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implies that -1 = 0 and hence C = (C)  (RC(N)). Therefore  is 

not proper rational extension of RC(N). 

Corollary (2.2): Let M be an R-module. For each submodule N of M 

there exists a submodule P of M such that N is rational in P and P has 

no proper rational extension. 

The following theorem gives a characterization of RC(N). 

Theorem (2.3) : Let N be a submodule of an R-module M and S = 

HomR(E(N)  M, E(M)). Then: 

RC(N) = { x E(N)  M \ for each y(0)M, there is rR with xrN 

and yr0 } 

Proof: Let L = { x E(N)  M \ y(0)   M,  rR with xrN and 

yr0 } and let xL. For any  : E(N)  M  E(M) with (N) =0, 

suppose that y = (x) 0, then there exists rR such that xrN and 

0yr=(xr), a contradiction. Thus (x)=0 and xRC(N). Conversely, if  

xRC(N) and xL, then there exists a non-zero element yE(M) such 

that for each rR with xrN implies yr=0. Define  : N+ xR E(M) 

by (n+xr)=yr for each nN.  is well defined non-zero R-

homomorphism. Injectivity of E(M) implies that  can be extended to  

S, a contradiction. 

For the proof of the following lemma see [5]. 

Lemma (2.4): Let M be an R-module and let N be a submodule of 

E(M). If N is quasi-invertible relative to a submodule P of E(M) with 

N P, then N M is quasi-invertible relative to a submodule P M of 

M with N M  P M. 

 The last theorem asserts that, if N is a submodule of an R-module 

M then by proposition(1.1), N is quasi-invertible relative to a 

submodule RC(N) of E(M) with NRC(N). It follows by lemma (2.4) 

that N is quasi-invertible relative to a submodule RC(N) N is quasi-

invertible relative to RC(N) of M with NRC(N). Then we have the 

following. 

Theorem (2.5): Let M be an R-module. For each submodule N of M, 

there is a submodule P of M such that N is quasi-invertible relative to P 

and P has no proper rational extension. 

Now, we give the following definition. 

Definition (2.6): Let N be a submodule of an R-module M. Then: 

(1). RC(N) is called the maximal rational extension of N in M. Any 

maximal rational extension of N in M is isomorphic to RC(N). 

(2). N is called rationally closed in M if N=RC(N). 

Condition (2) above states that a submodule N of an R-module M is 

rationally closed if and only if N has no proper rational extension in M. 

 Note that RC(N) is always rationally closed. It is clear that every 

closed submodule of an R-module is rationally closed, but the converse 

m
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m
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may not be true for example see [4]. However for non-singular modules 

they are equivalent. As every direct summand is closed, hence every 

direct summand is rationally closed. This motivates to the converse. 

Rationally Extending modules 

 Recall that an R-module M is called extending (or CS-module), if 

each submodule of M is essential in a direct summand. This is 

equivalent to saying that every closed (or complement) submodule of M 

is direct summand. 

Definition (3.1): An R-module M is called rationally extending (or 

RCS-module), if each submodule of M is rational in a direct summand. 

It is clear that every rationally extending modules is extending modules, 

and every monoform modules is trivially rationally extending. Non-

singular extending modules are rationally extending. 

Proposition (3.2): An R-module M is called rationally extending if and 

only if each rationally closed submodule of M is direct summand. 

Proof: Let N be a rationally closed submodule of M. Then there is a 

direct summand K of M such that N is rational in K. But N has no 

proper rational extension in M, then N=K. Conversely, let N be a 

submodule of M. By theorem (2.1), N is rational in RC(N) and RC(N) is 

rationally closed, then RC(N) is a direct summand. Thus M is rationally 

extending. 

The following proposition can be easily proved. 

 Proposition (3.3): An R-module M is monoform if and only if M is 

indecomposable rationally extending module. 

Let R = Z, the ring of integers and M = P
Z . Then M is trivially 

extending R-module. It is clear that M is indecomposable. We claim 

that M is not rationally extending. If not then by proposition (3.3), M is 

monoform, but this  is not true, since if we consider the submodule N = 

ZP, then there exist MZ
P

Z
P


2

1
,

1
with 0

1
 Z

P
.For each rR, if

NrZ
P

 )
1

(
2

 then r is a multiple of P and hence 0)
1

(  rZ
P

. This 

shows that N is non-zero submodule of M which is not rational in M. 

Also we can use a similar arguments to show that Zn is an extending Z-

module which is not rationally extending if n is a power of prime 

numbers for example Z8  and Z9 ,Z16 and etc... 

Proposition (3.4): Let M be an R-module and let N be a submodule of 

M. If N is rationally closed in a direct summand of M, Then N is 

rationally closed in M. 

 

Proof: Let M=M1 M2 and N is rationally closed submodule of M1. 

Assume that N is rational in B for some submodule B of M. Let ρ: M 

M1 be the projection of M onto M1.  We claim that ρ(N) is rational in 
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ρ(B). For each ρ(x), ρ(y) ρ(B) with ρ(y) 0, there exists rR such that 

ρ(x)r  N and ρ(y)r  0. Noting that ρ(x)r = ρ(ρ(x)r)  ρ(N). Thus N= 

ρ(N) is rational in ρ(B)  M1. Since N is rationally closed in M1, then 

ρ(B) =N  B and so (1- ρ)(B) = B. Since (1- ρ)(B)∩N = 0 and N is 

essential in B, then (1- ρ)(B) = 0 and hence B = ρ(B)  M1 then N = B, 

since N is rationally closed in M1. 

 

Corollary (3.5): Direct summands of rationally extending R-module are 

rationally extending. 

Proof: Let N be a direct summand of rationally extending R-module 

M.If K is a rationally closed submodule of N, then proposition (3.4) 

implies that K is rational closed in M. Since M is rationally extending, 

then K is a direct summand of M. Modular law implies that K is a direct 

summand of N and hence N is rationally extending. 

As we have mentioned in the introduction, an R-module M is quasi-

monoform if each non-zero proper submodule of M is quasi-invertible 

relative to a submodule of M. Now we introduce a stronger case as in 

the following definition. 

Definition (3.5): An R-module M is called strongly quasi-monoform if 

each non-zero proper submodule of M is quasi-invertible relative to 

some direct summand of M.  

Then we can extend the implications mentioned in the introduction to 

the following one for modules. 

  Monoform    Quasi-Dedekind    strongly quasi-monoform  

quasi-monoform 

                    

Rationally extending  strongly quasi-monoform  

          

   Extending 

Remark: The proof of "every rationally extending module is strongly 

quasi-monoform" is follows from proposition (1.1). 

 

 Recall that an R-module M is multiplication if each submodule N 

of M has the form N = MB for some ideal A of R. The following 

theorem is proved in [5]. 

 

Theorem (3.6): Let M be a multiplication R-module and N be a 

submodule of M. If N is quasi-invertible relative to a submodule P of M 

with NP, then N is rational in P. 
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Theorem (3.7): Let M be a multiplication R-module. Then M is 

rationally extending module if and only if M is strongly quasi-

monoform. 

 

Proof: Suppose that M is rationally extending and N be a non-zero 

submodule of M, then there exist a direct summand K of M with N is 

rational in K. Proposition (1.1) implies that N is quasi-invertible relative 

to K and hence M is strongly quasi-monoform. Conversely, let N be a 

submodule of strongly quasi-monoform R-module M. Then there is a 

direct summand K of M such that N is quasi-invertible relative to K. 

Theorem (3.6) implies that N is rational in K, that is N is rational in a 

direct summand of M. Hence M is rationally extending. 

 As every commutative ring R is a multiplication R-module, then 

we have the following. 

 

Corollary (3.8): A commutative ring R is rationally extending if and 

only if R is strongly quasi-monoform. 

In the following proposition we consider conditions under which 

extending modules are rationally extending within strongly quasi-

monoform modules. First recall the following which appears in [5]. 

 

Proposition (3.9): Let M be a multiplication R-module with prime 

annihilator in R and N, P be submodules of M with NP. If N is 

essential in P, then N is quasi-invertible relative to P. 

 

Theorem (3.10): Let M be a multiplication R-module with prime 

annihilator in R. Then the following statements are equivalent. 

(1). M is extending module 

(2). M is strongly quasi-monoform module. 

(3). M is rationally extending module. 

 

Proof: (1) (2): follows from proposition (3.9). 

           (2) (3): follows from theorem (3.7). 

           (3) (1): It is clear. 

 

Corollary (3.11): Let M be a faithful multiplication module over an 

integral domain R. Then the following are equivalent. 

(1). M is extending module 

(2). M is strongly quasi-monoform module. 

(3). M is rationally extending module. 

 

In the following we consider another type of conditions under which 

strongly quasi-monoform module being rationally extending. 
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Theorem (3.12): Let M be an R-module which is injective relative to 

all their direct summands.Then M is strongly quasi-monoform module 

if and only if M is rationally extending. 

 

Proof: Assume that M is strongly quasi-monoform module and N be a 

submodule of M. Then there is a direct summand P of M such that N is 

quasi-invertible relative to the submodule P of M with NP. Since M is 

injective relative to P, so by proposition (1.1), for each m1P, m2M 

with m2  0, there exists rR such that m1 rN and m2r  0. This 

property is a more general of that N is rational in P, and hence M is 

rationally extending module. The converse is obvious. 

 

Corollary (3.13): Let M be quasi-injective R-module. Then M is 

strongly quasi-monoform if and only if M is rationally extending 

module. 

Note that Z-module P
Z  is quasi-injective which is neither rationally 

extending nor strongly quasi-monoform 
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