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Abstract

Throughout this paper we introduce the notion of coextending mod-
ule as a dual of the class of extending modules. Various properties of
this class of modules are given, and some relationships between these
modules and other related modules are introduced.
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1 Introduction

Let R be a commutative ring with unity and let M be a unitary left R-module.
A submodule N of M is said to be essential in M (denoted by N ≤e M), if
for any submodule K of M, N ∩K = 0 implies that K = 0 [11]. A submodule
N of M is said to be closed in M (denoted by N <c M)if N has no proper
essential extension in M ; that is if N ≤e W < M then N=W [11].A submodule
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N of M is said to be small in M (denoted by N � M), if whenever K ≤ M ,
N + M = M , then N = M . A submodule N of M is said to be coclosed
in M (denoted by N <cc M),if whenever N

K
� M

K
then K = N for each

submodule K of N [10]. An R-module M is called extending (or CS-module),
if every submodule of M is essential in a direct summand [6]. Equivalently, M
is extending if and only if every closed submodule of M is a direct summand
[6].

In this paper we introduce a new concept (up to our knowledge)namely
coextending module as a dual of the class of extending modules, where M is
called coextending (briefly CCS-module),if every coclosed submodule of M is
a direct summand of M .

This research consists of three sections. In S2 some basic properties and
examples of coextending modules are given. In S3 we show by example that
the direct sum of coextending module may not be coextending (see Ex(3.1).
However, we give certain conditions under which the direct sum of coextend-
ing modules be coextending module (see Th (3.4) and Th (3.5)). In S4 we
investigate some relationships between coextending modules and other related
modules such as lifting, semisimple modules,discrete, quasi-discrete and UCC-
modules.

2 Some Basic Properties

In this section we introduce the concept of Coextending modules. We investi-
gate the basic properties of this type of modules.

Definition 2.1. An R-module M is called coextending (or CCS-module),
if every coclosed submodule of M is a direct summand of M .

Remarks and Examples 2.2.

1. It is clear that every hollow module is CCS-module, where an R-module
M is called hollow if every proper submodule of M is small [7].

proof. Let M be a hollow module and let N be a coclosed submodule of
M , then N � M , and so for each submodule K of N , N

K
� M

K
. This

implies that N
0
� M

0
. But N is a coclosed submodule of M , thus N=(0),

which is a direct summand of M .

2. coextending module may not be hollow module. For example, Z as Z-
module is coextending module, but not hollow module.

3. It is clear that every semisimple module is CCS-module, but the con-
verse is not true for examples: Z as Z module is CCS-module but not
semisimple, also Z12 is CCS-module but not semisimple.
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4. Every local module (module which has only maximal submodule), is a
CCS-module.

5. Every uniserial module is a CCS-module. In particular ZP∞ as Z-module
is CCS-module.

6. By a direct computation, we can see that M = Z2⊕Z4 is a CCS-module.

7. If a module M is isomorphic to a module Ḿ , then M is a CCS-module
if and only if Ḿ is a CCS-module.

8. Every couniform module is CCS-module, where an R-module M is called
couniform , if every proper submodule N of M is either (0) or there exists
a proper submodule N1 of N such that N

N1
� M

N1
[12].

proof. Let N be a submodule of M . If N = (0) then it is clear that N
is a coclosed direct summand of M and we are done. If N �= (0). Since
M is a couniform module so there exists a proper N1 of N such that
N
N1

� M
N1

. Hence N is not coclosed in M . Thus (0) is the only (proper)
coclosed submodule of M , and so M is CCS-module.

However, a CCS-module need not be a couniform module. In fact the
Z-module Z6 is a CCS-module because it is a semisimple module. On
the other hand Z6 is not a couniform module, see ([12], Rem (1.2)(2)).

Note that every Artinian couniform module is a hollow module [12], hence
it is a CCS-module.

The following results give some important properties of the coextending
modules.

Proposition 2.3. A direct summand of coextending module is a coextend-
ing module.

proof. Let M be an R-module, and let N be a direct summand of M , Let
K be a coclosed submodule of N . Since N is a direct summand of M , so N is
a coclosed submodule of M . It follows that K is a coclosed submodule of M ,
hence K is a direct summand of M , that is M = K ⊕ L for some submodule
L of M . N = M ∩ N = (K ⊕ L) ∩ N = K ⊕ (L ∩ N) by modular law. Thus
K is a direct summand of N , i.e N is a CCS-module.

Corollary 2.4. If M is a CCS-module and N is a coclosed submodule of
M , then M

N
is a CCS-module.
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proof. Since M is a CCS-module and N is a coclosed submodule of M ,
then N is a direct summand of M , i.e M = N ⊕W for some submodule W of
M . Hence (M

N
) ∼= W . But W is a direct summand of M , W is a CCS-module.

Then M
N

is a CCS-module.

Corollary 2.5. Let f : M → Ḿ be an epimorphism from an R-module M
to a projective R-module Ḿ . If M is CCS-module, then Ḿ is CCS-module.

proof. Consider the following short exact sequence:

(0) → kerf
i→ M

f→ Ḿ → (0)

where i is the inclusion homomorphism. But M is a projective homomorphism,
so the sequence splits. Therefore M ∼= (kerf ⊕Ḿ), that is M is an isomorphic
to a direct summand of M . By Prop (2.3), Ḿ is a CCS-module.

Remark 2.6. Let M be an R-module and let R̄ = ( R
annM

). Then M is a
CCS-module if and only if M is a CCS-module as R̄-module.

proof. It is clear.

Recall that a submodule L of an R-module M is called coessential of N in
M (denoted by L ≤ce N in M), if N

L
� M

L
[8].

Remark 2.7. If every submodule of M is a coessential in a direct summand
of M ,then M is a CCS-module.

Proof. Let L be a coclosed submodule of M . By hypothesis there exists
a direct summand N of M such that L ≤ce N , such that N

L
� M

L
. But L is a

coclosed in M , therefore L = N , and hence L is a direct summand of M .

The following theorem gives the hereditary property for the CCS-module.Before
that, an R-module M is called multiplication if for each submodule N of M
there exists an ideal I of R such that N = IM [4].

Theorem 2.8. Let M be a finitely generated faithful multiplication R-module.
Then R is a CCS-ring if and only if M is a CCS-R-module.

Proof. ⇒) Let N be a coclosed submodule of M . Since M is a multipli-
cation R-module, then N = IM for some ideal I of R. It is easy to see that
I is a coclosed in R. Hence I is a direct summand of R, and so R = I ⊕ J
for some ideal J of R. It follows that M = IM ⊕ JM = N ⊕ JM . i.e N is a
direct summand of M .

⇐) Let I be a coclosed ideal of R. Put N = IM , N is a coclosed submodule
of M . But M is a CCS-module, so N is a direct summand of M , that is there
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exist a submodule W of M such that N ⊕ W = M . But W = JM for some
ideal J of R. Now IM ⊕ JM = M implies that (I + J)M = RM . Since M is
a finitely generated faithful multiplication module, then I + J = R, i.e I is a
direct summand of R.

The following proposition gives a necessary and sufficient condition on a
free module to be a CCS-module.

Proposition 2.9. Let R be a ring, then every free R-module is a CCS-
module if and only if every free projective R-module is a CCS-module.

Proof. ⇒) Let M be a projective R-module. M is an epimorphic image
of a free R-module say F [13]. By the hypothesis , F is a CCS-module, and
by Cor (2.5), M is a CCS-module.

⇐) It is a clear.

Corollary 2.10. Let R be a ring, then every finitely generated free R-
module is a CCS-module if and only if every finitely generated projective R-
module is a CCS-module.

3 Direct Sum of Coextending Modules

In this section we study when the direct sum of coextending module is coex-
tending.In fact this is not true in general as the following example shows.

Example 3.1. We saw in Rem and Ex (2.2), that both of Z and Zp∞ are
CCS-module, but we can easily see that Z ⊕ Zp∞ is not.

We study some cases in which the direct sum of CCS-module be a CCS-
module. Before that we need the following lemmas.

Lemma 3.2. Let M = M1 ⊕M2 where M1 and M2 be two R-modules, and
let K = K1⊕K2, where K1 ≤ M1 and K2 ≤ M2. If K is a coclosed submodule
of M , then K1 is a coclosed submodule of M1 and K2 is a coclosed submodule
of M2.

Proof. Assume that (K1

W1
) � (M1

W1
)

and

(K2

W2
) � (M2

W2
) where W1 ≤ K1 and W2 ≤ K2. Hence:
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K1

W1
⊕ K2

W2
� M1

W1
⊕ M2

W2

Therefore:
K1 ⊕ K2

W1 ⊕ W2
� M1 ⊕ M2

W1 ⊕ W2

That is:
K

W1 ⊕ W2

� M

W1 ⊕ W2

Since K is a coclosed submodule of M , then K = W1⊕W2; that is K1⊕K2 =
W1 ⊕ W2. Hence K1 = W1 and K2 = W2. Thus K1 and K2 are coclosed
submodules in M1 and M2 respectively.

Lemma 3.3. Let M = M1 ⊕ M2, where M1 and M2 be R-modules and let
annRM1 + annRM1 = R. Then a submodule K is coclosed in M if and only if
there exist coclosed submodules K1 of M1 and K2 of M2 such that K = K1⊕K2.

Proof. ⇒) Since K ≤ M and M = M1 ⊕ M2, annRM2 + annRM2, so by
([1], Prop(4.2)) there exists submodules K1 and K2 of M1 and M2 respectively
such that K = K1 ⊕ K2, and by lemma(3.2) both of K1 and K2 are coclosed
submodules in M1 and M2 respectively.
⇐) In order to prove that K is a coclosed submodule of M , assume that
K
W

� M
W

where W is a submodule of M . Since annRM1 + annRM2 = R, so
by the same proof of ([1], Prop(4.2)), W = W1 ⊕W2 for some submodules W1

and W2 of M1 and M2 respectively. Thus:

(
K

W
) = (

K1 ⊕ K2

W1 ⊕ W2
) � M1 ⊕ M2

W1 ⊕ W2

Hence by [11] :

((
K1

W1
) ⊕ (

K2

W2
)) � ((

M1

W1
) ⊕ (

M2

W2
))

So by [3]:

(
K1

W1
) � (

K2

W2
) and (

M1

W1
) � (

M2

W2
)

Since K1 and K2 are coclosed submodule of M1 and M2 respectively, thus
K1 = W1 and K2 = W2, and hence K = W1 ⊕ W2 = W .

In the following theorems we put certain conditions under which the direct
sum of two CCS-modules is CCS-modules.

Theorem 3.4. Let M = M1 ⊕ M2 Where M1 and M2 be R-modules.If
annRM1 + annRM2 = R, then M is a CCS-module if and only if both of M1

and M2 are CCS-modules.
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Proof. ⇒) It follows from Prop(2.3).
⇐) Let K a coclosed submodule of M . By Lemma(3.3), K = K1 ⊕ K2 for
some coclosed submodules K1 and K2 of M1 and M2 respectively. But M1

and M2 are CCS-modules, so K1 is direct summand of M1 and K2 is a direct
summand of M2; that is K1⊕W1 = M1 and K2⊕W2 = M2, for some W1 ≤ M1

and W2 ≤ M2. Hence:

K ⊕ (W1 ⊕ W2) = (K1 ⊕ K2) ⊕ (W1 ⊕ W2)

= (K1 ⊕ W1) ⊕ (K2 ⊕ W2)

M1 ⊕ M2 = M

Therefore K is a is a direct summand of M , and hence M is a CCS-module.

Theorem 3.5. Let M =
⊕n

i=1 Mi, where each of Mi is an R-module for
each i = 1, ..., n. If every submodule of M is a fully invariant, then M is a
CCS-module if and only if each Mi is a CCS-module for each i = 1, ..., n.

Proof. ⇒)It follows from Prop(2.3).
⇐) Let N be a coclosed submodule of M . By assumption N is a fully invariant
submodule of M , so N =

⊕n
i=1(N ∩ Mi). On the other hand N is a coclosed

submodule of M , so by lemma(3.3), for each i = 1, ..., n, N ∩Mi is a coclosed
submodule of Mi. Hence N∩Mi is a direct summand of Mi for each i = 1, ..., n,
since Mi is a CCS-module, for each i = 1, ..., n, thus (N ∩Mi) ⊕Bi = Mi for
some submodule Bi of Mi.Terefore:

n⊕

i=1

Mi =

n⊕

i=1

{(N ∩ Mi) ⊕ Bi}

= {
n⊕

i=1

(N ∩ Mi)} ⊕ {
n⊕

i=1

Bi}

So M = N ⊕ B, where B =
⊕n

i=1 Bi, that is M is a CCS-module.

4 Coextending Modules and other related con-

cepts

In this section we give some relationships between CCS-modules and some
other modules such as lifting, semisimple, quasi-discrete and UCC-modules.

Recall that an R-module M is called lifting, if for every submodule N
of M there exists a decomposition M = M1 ⊕ M2 such that M1 ≤ N and
N ∩ M2 � M [15]. Hence we have the following.
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Proposition 4.1. If M is a lifting R-module, then M is a CCS-module.

Proof.Let N be a coclosed submodule of M . Since M is a lifting module,
so there exists a direct summand K of M , K ≤ N such that N

K
� M

K
[14]. But

N is a coclosed submodule in M , then N = K. That is M is a CCS-module.

The converse of Prop(4.1) is not true in general, for example Z as Z-
module is a CCS-module, but it is not lifting. However by using Th.(2.2.3)
in [3], we get the following theorem, but first recall that an R-module M is
called amply supplemented module, if for any two submodule U and V of M
with U + V = M , then V contains a supplement of U in M [17].

Theorem 4.2. Let M be an R-module, then M is a lifting module if and
only if M is a CCS-module and amply supplemented.

In the following result we put condition under which the CCS-module can
be lifting module.

Proposition 4.3. Let M be an R-module. If every submodule of M is a
coclosed, then the following statements are equivalent.

1. M is a lifting module.

2. M is a CCS-module.

3. M is a semisimple module.

Proof.
(1)⇒(2): It follows from Prop (4.1).
(2)⇒(3): It is clear.
(3)⇒(1): It is clear.

Recall that an R-module M is called discret, if M is lifting module and
for any submodule N ≤ M with M

N
is isomorphic to a direct summand of

M , implies that N is a summand of M . And M is called a quasi-discret if
M is a lifting module and whenever M1 and M2 are summand of M with
M1 + M2 = M , then M1 ∩ M2 is a summand of M [15].

Corollary 4.4. Let M be an R-module such that every submodule of M is
coclosed, then the following statements are equivalent.

1. M is a lifting module.

2. M is a discret module.

3. M is a quasi-discret module.
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4. M is a CCS-module.

5. M is a semisimple module.

Proof.
(1)⇔(4)⇔(5): It follows from Prop (4.1).

(1)⇔(2)⇔(3): By ([3], Prop(2.3.8)).

Recall that a submodule N of an R-module M has coclosure or (S-closure),
if there exists a coclosed submodule H of N such that N

H
� M

H
[14]. So we can

give the following.

Proposition 4.5. If an R-module M is a CCS-module such that every
submodule N of M has a coclosure, then M is a lifting module.

Proof. Let N be a submodule of M . By assumption, there exists a coclosed
submodule H of N such that N

H
� M

H
. But M is a CCS-module, therefore H

is a direct summand of M . Thus M is a lifting module [14].

Recall that an R-module M is called UCC-module, if every submodule of
M has a unique coclosure in M ([5], P.261). Hence we have the following.

”If an R-module M is a CCS-module and UCC-module, then M is a lifting
module”.

J.Abuhlial in [2] introduced the class of the completely distributive module,
where an R-module M is called completely distributive, if for each a collection
Ni of submodules of M and for each submodule N of M :

N +
⋂

i∈Λ

Ni =
⋂

i∈Λ

(N + Ni)

In order to give the main result in this section we need the following lemmas.

Lemma 4.6. Let M be a completely distributive module, and let N be a
submodule of M . If Ai be a collection of submodules of M such that Ai ≤ce N
of M , then

⋂
i∈Λ Ai ≤ce N of M .

Proof. We want to prove that
⋂

i∈Λ Ai ≤ce N of M , that is:

N⋂
i∈Λ Ai

� M⋂
i∈Λ Ai

Suppose that:

N⋂
i∈Λ Ai

+
B⋂

i∈Λ Ai
=

M⋂
i∈Λ Ai
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Then N + B = M , which implies that N+B
Ai

= M
Ai

for each i ∈ Λ, hence

N

Ai
+

B + Ai

Ai
=

M

Ai

for each i ∈ Λ. Since N
Ai

� M
Ai

for each i ∈ Λ, then B + Ai = M , hence

M =
⋂

i∈Λ

(B + Ai)

Since M is a completely distributive, therefore M = B + (
⋂

i∈Λ Ai). But⋂
i∈Λ Ai ⊆ B, thus M = B, hence

B⋂
i∈Λ Ai

=
M⋂

i∈Λ Ai

That is:
N⋂

i∈Λ Ai

� M⋂
i∈Λ Ai

i.e
⋂

i∈Λ Ai ≤ce N .

Also we need the following lemma.

Lemma 4.7. Let M be a completely distributive module , and let N be a
submodule of M , then there exists a submodule coclosed submodule K of N
such that K ≤ Nof M (i.e there exists a coclosure submodule of N).

Proof. Consider the following set:

C = {H |H ≤ce NofM}
C �= ϕ, since N ≤ce N of M . Let K =

⋂
Hi∈C Hi. Then by lemma (4.6),

K ≤ce N of M . We claim that K is a coclosed submodule of M . It is clear
that K is a minimal element of C. Assume that K

T
� M

T
for some submodule

T of K. Hence T ≤ce N of M , thus T ∈ C. But T ≤ K and K is a minimal
element of C, so T = K. Thus K is a coclosed submodule in M .

Now we can give the main result of this section.

Theorem 4.8. Let M be a completely distributive module, then M is a
CCS-module if and only if M is a lifting module.

Proof.
⇒) Let N be a submodule of M . Since M is a completely distributive

module, so by lemma (4.7), there exists a coclosed submodule K of
M , K ≤ N such that

N

K
� M

K
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. But M is a CCS-module, then K is a direct summand of M . Hence M is a
lifting module.

⇐) It is a clear.

Recall that an R-module is called A-projective, where A is an R-module,
if for each submodule X of A, every homomorphism h : M → A

X
can be lifted

to a homomorphism g : M → A, i.e the following diagram :

M

h
��

g

��
A π

�� A
X

�� 0

commutes, where π is the natural epimorphism, and M is called a pro-
jective module, if M is a A-projective for every modules A. And M is self
projective if M is M-projective [6]. Also Iman in [3] introduced the concept of
A-coprojective module, where an R-module M is called A-coprojective mod-
ule, if for every homomorphism f : M → A

K
, where K is a coclosed submodule

of A, can be lifted to a homomorphism g : M → A i.e the following diagram:

M

f
��

g

��
A π

�� A
K

�� 0

commutes, where π is the natural epimorphism.

By using Th (2.2.2) in [3], we get the following proposition.

Proposition 4.9. For an R-module M the following statements are equiv-
alent.

1. M is a CCS-module.

2. Every R-module is an M-coprojective module.

3. For every coclosed submodule K of M , M
K

is an M-coprojective module.

Corollary 4.10. Let M be a an R-module. If M is a CCS-module, then
M is a self coprojective module.



590 Inaam Mohammed Ali Hadi and Muna Abbas Ahmed

Proof. Since M is a CCS-module, then by Prop (4.9), every R-module is
an M-coprojective; that is M is a self coprojective module.

Recall that an R-module M is called D2, if for every submodule N of M ,
for which M

N
is a direct summand of M , then N is a direct summand of M [16].

And M is called WD2-module, if for every coclosed submodule N of M for
which M

N
is isomorphic to a direct summand of M , then N is a direct summand

of M [3].

Remark 4.11. We have the following relations:

CCS-module =⇒ Self coprojective module =⇒ WD2-module

Theorem 4.12. Let M be a an R-module. Consider the following state-
ments:

1. R is a semisimple ring.

2. Every R-module is a lifting module.

3. Every R-module is a CCS-module.

4. Every R-module is an M-coprojective module.

Then (1)⇒ (2)⇒ (3)⇔ (4)⇒. And if J(R) = (0), then (2)⇒ (1).

Proof.
(1)⇒ (2): Since R is a semisimple ring, then every R-module is a semisimple

module, and hence it is a lifting module.
(2)⇒ (3): It is a clear.
(3)⇔ (4): By Prop (4.9).
(2)⇒ (1): Since J(R) = (0), so by Prop (2.1.16) in [9], R is a semisimple ring.
Note that if every R-module is an amply supplemented, then (3)⇔ (2).

Next we have the following.

Theorem 4.13. Let R be a ring such that J( R
K

) = (0), for each ideal K
of R. Then R is a semisimple ring if and only if every R-module is a CCS-
module.

Proof. ⇒) It is a clear.
⇐) Let I be an ideal of R. Since every R-module is a CCS-module, then R is
a CCS-R-module. So if I is a coclosed ideal in R, then I is a direct summand
of R. Assume that I is not coclosed ideal in R, then there exists a proper
subideal K of I such that I

K
� R

K
. Thus I

K
⊆ J( R

K
).But J( R

K
) = (0), then

I
K

= (0), and hence I = K which is a contradiction.Thus I must be a coclosed
in R, and so I is a direct summand od R.

We end this section by the following Corollary.
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Corollary 4.14. Let R be a ring such that J( R
K

) = (0), for each ideal K
of R. Consider the following statemens:

1. R is a semisimple ring.

2. Every R-module is a lifting module.

3. Every R-module is a CCS-module.

4. Every projective R-module is a CCS-module.

5. Every free R-module is a CCS-module.

6. Every finitely generated free R-module is a CCS-module.

7. Every finitely generated projective R-module is a CCS-module.

8. R ⊕ R is CCS-module.

Then (1)⇔ (2)⇔ (3)⇒ (4)⇔ (5)⇔ (6)⇔ (7), and (1)⇒ (8).

Proof.
(1)⇔ (2): Since J( R

K
) = (0) for each ideal K of R, then J(R) = (0). Hence

the result follows from ([9],Prop(2.1.16)).
(2)⇔ (3): By Th (4.13).
(3)⇒ (4)⇔ (5)⇔ (6)⇔ (7): It is clear.
(1)⇒ (8): Since R is a semisimple ring, then R ⊕ R is a semisimple ring, and
hence R ⊕ R is a CCS-module.
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