Preferred Language
Articles
/
7hcRXI8BVTCNdQwC0G2N
T-Small Quasi-Dedekind modules
...Show More Authors
Abstract<p>Let Q be a left Module over a ring with identity ℝ. In this paper, we introduced the concept of T-small Quasi-Dedekind Modules as follows, An R-module Q is T-small quasi-Dedekind Module if, <inline-formula> <tex-math><?CDATA $\forall \,w\,\in En{d}_{R}(Q),\,w\ne 0$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mrow> <mo>∀</mo> <mspace width="0.25em"></mspace> <mi>w</mi> <mspace width="0.25em"></mspace> <mo>∈</mo> <mi>E</mi> <mi>n</mi> <msub> <mi>d</mi> <mi>R</mi> </msub> <mo stretchy="false">(</mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="0.25em"></mspace> <mi>w</mi> <mo>≠</mo> <mn>0</mn> </mrow> </math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JPCS_1963_1_012029_ieqn1.gif" xlink:type="simple"></inline-graphic> </inline-formula> then Ker w ≪<sub>T</sub> Q. Also, we illustrate it by examples and give basic properties.</p>
Scopus Crossref
View Publication
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Physics: Conference Series
Essential T-small quasi-Dedekind modules
...Show More Authors
Abstract<p>Let M be an R-module, where R be a commutative; ring with identity. In this paper, we defined a new kind of submodules, namely T-small quasi-Dedekind module(T-small Q-D-M) and essential T-small quasi-Dedekind module(ET-small Q-D-M). Let T be a proper submodule of an R-module M, M is called an (T-small Q-D-M) if, for all f ∊ End(M), f ≠ 0, implies <italic>Kerf</italic> is an T-small submodule of M <italic>(Kerf</italic>«<sub>T</sub> <italic>M)</italic>, if T≠ 0 then T ⊈ <italic>Kerf</italic>. In case <italic>Kerf</italic> is an essential T-small submodule of M <italic>(Kerf <<</italic></p> ... Show More
View Publication
Scopus Crossref
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Z-Small Quasi-Dedekind Modules
...Show More Authors

     In this paper, we define and study z-small quasi-Dedekind as a generalization of small quasi-Dedekind modules. A submodule  of -module  is called z-small (  if whenever  , then . Also,  is called a z-small quasi-Dedekind module if for all  implies  . We also describe some of their properties and characterizations. Finally, some examples are given.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
Small-Essentially Quasi-Dedekind R-Modules
...Show More Authors

In this research, we introduce a small essentially quasi−Dedekind R-module to generalize the term of an essentially quasi.−Dedekind R-module. We also give some of the basic properties and a number of examples that illustrate these properties.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Relationship of Essentially Small Quasi-Dedekind Modules with Scalar and Multiplication Modules
...Show More Authors

Let be a ring with 1 and D is a left module over . In this paper, we study the relationship between essentially small quasi-Dedekind modules with scalar and multiplication modules. We show that if D is a scalar small quasi-prime -module, thus D is an essentially small quasi-Dedekind -module. We also show that if D is a faithful multiplication -module, then D is an essentially small prime -module iff is an essentially small quasi-Dedekind ring.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Strongly Essentially Quasi-Dedekind Modules
...Show More Authors

  Let R be a commutative ring with unity. In this paper we introduce and study the concept of strongly essentially quasi-Dedekind module as a generalization of essentially quasiDedekind module. A unitary R-module M is called a strongly essentially quasi-Dedekind module if ( , ) 0 Hom M N M for all semiessential submodules N of M. Where a submodule N  of  an R-module  M  is called semiessential if , 0  pN for all nonzero prime submodules  P of  M .
 

View Publication Preview PDF
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Essentially Quasi-Invertible Submodules and Essentially Quasi-Dedekind Modules
...Show More Authors

        Let R be a commutative ring with  identity . In this paper  we study  the concepts of  essentially quasi-invertible submodules and essentially  quasi-Dedekind modules  as  a generalization of  quasi-invertible submodules and quasi-Dedekind  modules  . Among the results that we obtain is the following : M  is an essentially  quasi-Dedekind  module if and only if M is aK-nonsingular module,where a module M is K-nonsingular if, for each  , Kerf ≤e M   implies   f = 0 .

View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
On Quasi-Small Prime Modules
...Show More Authors
Abstract<p>Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.</p>
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Full Text Book Of Minar Congress4
RELATIONSHIP OF ESSENTIALLY SEMISMALL QUASI-DEDEKIND MODULES WITH SCALAR AND MULTIPLICATION MODULES
...Show More Authors

Let R be a ring with 1 and W is a left Module over R. A Submodule D of an R-Module W is small in W(D ≪ W) if whenever a Submodule V of W s.t W = D + V then V = W. A proper Submodule Y of an R-Module W is semismall in W(Y ≪_S W) if Y = 0 or Y/F ≪ W/F ∀ nonzero Submodules F of Y. A Submodule U of an R-Module E is essentially semismall(U ≪es E), if for every non zero semismall Submodule V of E, V∩U ≠ 0. An R-Module E is essentially semismall quasi-Dedekind(ESSQD) if Hom(E/W, E) = 0 ∀ W ≪es E. A ring R is ESSQD if R is an ESSQD R-Module. An R-Module E is a scalar R-Module if, ∀ , ∃ s.t V(e) = ze ∀ . In this paper, we study the relationship between ESSQD Modules with scalar and multiplication Modules. We show that

... Show More
View Publication
Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Quasi-semiprime Modules
...Show More Authors

    Suppose that A be an abelain ring with identity, B be a unitary (left) A-module, in this paper ,we introduce a type of modules ,namely Quasi-semiprime A-module, whenever   is a Prime Ideal For proper submodule N of  B,then B is called Quasi-semiprime module ,which is a Generalization of Quasi-Prime A-module,whenever  annAN is a prime ideal for proper submodule N of B,then B is Quasi-prime module .A comprchensive study of these modules is given,and we study the Relationship between quasi-semiprime module and quasi-prime .We put the codition coprime over cosemiprime ring for the two cocept quasi-prime module and quasi-semiprime module are equavelant.and the cocept of  prime module and quasi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semi-Small Compressible Modules and Semi-Small Retractable Modules
...Show More Authors

Let  be a commutative ring with 1 and  be left unitary  . In this paper we introduced and studied concept of semi-small compressible module (a     is said to be semi-small compressible module if  can be embedded in every nonzero semi-small submodule of . Equivalently,  is  semi-small compressible module if there exists a monomorphism  , ,     is said to be semi-small retractable module if  , for every non-zero  semi-small sub module in . Equivalently,  is semi-small retractable if there exists a homomorphism  whenever  .

    In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible  and retractable  respectively and give some of

... Show More
View Publication Preview PDF
Crossref