Preferred Language
Articles
/
7hcRXI8BVTCNdQwC0G2N
T-Small Quasi-Dedekind modules
...Show More Authors
Abstract<p>Let Q be a left Module over a ring with identity ℝ. In this paper, we introduced the concept of T-small Quasi-Dedekind Modules as follows, An R-module Q is T-small quasi-Dedekind Module if, <inline-formula> <tex-math><?CDATA $\forall \,w\,\in En{d}_{R}(Q),\,w\ne 0$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mrow> <mo>∀</mo> <mspace width="0.25em"></mspace> <mi>w</mi> <mspace width="0.25em"></mspace> <mo>∈</mo> <mi>E</mi> <mi>n</mi> <msub> <mi>d</mi> <mi>R</mi> </msub> <mo stretchy="false">(</mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="0.25em"></mspace> <mi>w</mi> <mo>≠</mo> <mn>0</mn> </mrow> </math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JPCS_1963_1_012029_ieqn1.gif" xlink:type="simple"></inline-graphic> </inline-formula> then Ker w ≪<sub>T</sub> Q. Also, we illustrate it by examples and give basic properties.</p>
Scopus Crossref
View Publication
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Stable Semisimple Modules, Stable t- Semisimple Modules and Strongly Stable t-Semisimple Modules
...Show More Authors

        Throughout this paper, three concepts are introduced namely stable semisimple modules, stable t-semisimple modules and strongly stable t-semisimple. Many features co-related with these concepts are presented. Also many connections between these concepts are given. Moreover several relationships between these classes of modules and other co-related classes and other related concepts are introduced.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Small Monoform Modules
...Show More Authors

 Let R be a commutative ring with unity, let M be a left R-module. In this paper we introduce the concept small monoform module as a generalization of monoform module. A module M is called small monoform if for each non zero submodule N of M and for each   f ∈ Hom(N,M), f ≠ 0 implies ker f is small submodule in N. We give the fundamental properties of small monoform modules. Also we present some relationships between small monoform modules and some related modules

View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Al- Mustansiriya J. Sci
Rationally Extending Modules and Strongly Quasi-Monoform Modules
...Show More Authors

An R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules

View Publication Preview PDF
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
T-ABSO T-Abso and T-Abso Quasi Primary Fuzzy Submodules
...Show More Authors

     Let Ḿ be a unitary R-module and R is a commutative ring with identity. Our aim in this paper  to study the concepts T-ABSO fuzzy ideals, T-ABSO fuzzy submodules and T-ABSO quasi primary fuzzy submodules, also we discuss these concepts in the class of multiplication fuzzy modules and relationships between these concepts. Many new basic properties and characterizations on these concepts are given.

 

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Relative Quasi-Injective Modules
...Show More Authors

    Let R be a commutative ring with unity and let M, N be unitary R-modules. In this research, we give generalizations for the concepts: weakly relative injectivity, relative tightness and weakly injectivity of modules. We call M weakly N-quasi-injective, if for each f  Hom(N,) there exists a submodule X of  such that  f (N)  X ≈ M, where  is the quasi-injective hull of M. And we call M N-quasi-tight, if every quotient N / K of N which embeds in  embeds in M. While we call M weakly quasi-injective if M is weakly N-quasiinjective for every finitely generated R-module N.         Moreover, we generalize some properties of weakly N-injectiv

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Quasi-Fully Cancellation Fuzzy Modules
...Show More Authors

  In this paper it was presented the idea quasi-fully cancellation fuzzy modules and we will denote it by  Q-FCF(M), condition universalistic idea quasi-fully cancellation modules It .has been circulated to this idea quasi-max fully cancellation fuzzy modules and we will denote it by Q-MFCF(M). Lot of results and properties have been studied in this research.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Italian Journal Of Pure And Applied Mathematics
Co-small monoform modules
...Show More Authors

he concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism f ∈ Hom R (V, U), implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investiga

... Show More
View Publication Preview PDF
Scopus
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
Small Pointwise M-Projective Modules
...Show More Authors

Let R be a ring and let M be a left R-module. In this paper introduce a small pointwise M-projective module as generalization of small M- projective module, also introduce the notation of small pointwise projective cover and study their basic properties.
.

View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
T-Essentially Coretractable and Weakly T-Essentially Coretractable Modules
...Show More Authors

        A new generalizations of coretractable modules are introduced where a module  is called t-essentially (weakly t-essentially) coretractable if for all proper submodule  of , there exists f End( ), f( )=0 and Imf tes  (Im f + tes ). Some basic properties are studied and many relationships between these classes and other related one are presented.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Almost and Strongly Almost Approximately Nearly Quasi Compactly Packed Modules
...Show More Authors

In this paper, we present the almost approximately nearly quasi compactly packed (submodules) modules as an application of the almost approximately nearly quasiprime submodule. We give some examples, remarks, and properties of this concept. Also, as the strong form of this concept, we introduce the strongly, almost approximately nearly quasi compactly packed (submodules) modules. Moreover, we present the definitions of almost approximately nearly quasiprime radical submodules and almost approximately nearly quasiprime radical submodules and give some basic properties of these concepts that will be needed in section four of this research. We study these two concepts extensively.

View Publication Preview PDF
Crossref