Preferred Language
Articles
/
3xeZfY8BVTCNdQwCUXlH
Pure-Hollow Modules and Pure-Lifting Modules
...Show More Authors

   Let  be a commutative ring with identity, and  be a unitary left R-module. In this paper we, introduce and study a new class of modules called pure hollow (Pr-hollow) and pure-lifting (Pr-lifting). We give a fundamental, properties of these concept.  also, we, introduce some conditions under which the quotient and direct sum of Pr-lifting modules is Pr-lifting.

Scopus Crossref
Publication Date
Sat Nov 28 2020
Journal Name
Iraqi Journal Of Science
Strongly Hollow R - Annihilator Lifting Modules and Strongly R - Annihilator (Hollow- Lifting) Modules
...Show More Authors

Let R be a commutative ring with unity. Let W be an R-module, for K≤F, where F is a submodule of W and K is said to be R-annihilator coessential submodule of F in W (briefly R-a-coessential) if  (denoted by K  F in W). An R-module W is called strongly hollow -R-annihilator -lifting module (briefly, strongly hollow-R-a-lifting), if for every submodule F of W with  hollow, there exists a fully invariant direct summand K of W such that K  F in W. An R - module W is called strongly R - annihilator - ( hollow - lifting ) module ( briefly strongly R - a - ( hollow - lifting ) module ), if for every submodule F of W with   R - a - hollow, there exists a fully invariant direct summand K o

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Generalized-hollow lifting modules
...Show More Authors

Let R be any ring with identity, and let M be a unitary left R-module. A submodule K of M is called generalized coessential submodule of N in M, if Rad( ). A module M is called generalized hollow-lifting module, if every submodule N of M with is a hollow module, has a generalized coessential submodule of N in M that is a direct summand of M. In this paper, we study some properties of this type of modules.

View Publication Preview PDF
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
Semi-T-Hollow Modules and Semi-T-Lifting Modules
...Show More Authors

Let be an associative ring with identity and let be a unitary left -module. Let  be a non-zero submodule of .We say that  is a semi- - hollow module if for every submodule  of  such that  is a semi- - small submodule ( ). In addition, we say that  is a semi- - lifting module if for every submodule  of , there exists a direct summand  of  and  such that  

The main purpose of this work was to develop the properties of these classes of module.

 

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Nov 30 2021
Journal Name
Journal Of The Indonesian Mathematical Society
e*-Hollow-Lifting and Cofinitely e*-Lifting Modules
...Show More Authors

Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Discrete Mathematical Sciences And Cryptography
On large-hollow lifting modules
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
On Hollow – J–Lifting Modules
...Show More Authors

In this paper, we introduce and study the concepts of hollow – J–lifting modules and FI – hollow – J–lifting modules as a proper generalization of both hollow–lifting and J–lifting modules . We call an R–module M as hollow – J – lifting if for every submodule N of M with is hollow, there exists a submodule K of M such that M = K Ḱ and K N in M . Several characterizations and properties of hollow –J–lifting modules are obtained . Modules related to hollow – J–lifting modules are  given .

View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Almost Pure Ideals (Submodules) and Almost Regular Rings (Modules)
...Show More Authors

     Let R1be a commutative2ring with identity and M be a unitary R-module. In this6work we7present almost pure8ideal (submodule) concept as a9generalization of pure10ideal (submodule).  lso, we1generalize some9properties of8almost pure ideal (submodule). The 7study is almost regular6ring (R-module).

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Mar 02 2014
Journal Name
Baghdad Science Journal
On Strongly F – Regular Modules and Strongly Pure Intersection Property
...Show More Authors

A submoduleA of amodule M is said to be strongly pure , if for each finite subset {ai} in A , (equivalently, for each a ?A) there exists ahomomorphism f : M ?A such that f(ai) = ai, ?i(f(a)=a).A module M is said to be strongly F–regular if each submodule of M is strongly pure .The main purpose of this paper is to develop the properties of strongly F–regular modules and study modules with the property that the intersection of any two strongly pure submodules is strongly pure .

View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Semihollow-Lifting Modules and Projectivity
...Show More Authors

Throughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
δ-Hollow Modules
...Show More Authors

    Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N ≪ M), i.e. N + W ≠ M for every proper submodule W in M. A δ-hollow module is a generalization of hollow module, where an R-module M is called δ-hollow module if every proper submodule N of M is δ-small (N δ  M), i.e. N + W ≠ M for every proper submodule W in M with M W is singular. In this work we study this class of modules and give several fundamental properties related with this concept

View Publication Preview PDF