Preferred Language
Articles
/
2xcTUo8BVTCNdQwC2Wsc
On J–Lifting Modules
...Show More Authors
Abstract<p>Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that <inline-formula> <tex-math><?CDATA ${\rm{M}} = {\rm{K}} \oplus \mathop {\rm{K}}\limits^\prime,\>\mathop {\rm{K}}\limits^\prime \subseteq {\rm{M}}$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block" overflow="scroll"> <mrow> <mi mathvariant="normal">M</mi> <mo>=</mo> <mi mathvariant="normal">K</mi> <mo>⊕</mo> <mover> <mi mathvariant="normal">K</mi> <mo>′</mo> </mover> <mo>,</mo> <mi mathvariant="normal"> </mi> <mover> <mi mathvariant="normal">K</mi> <mo>′</mo> </mover> <mo>⊆</mo> <mi mathvariant="normal">M</mi> </mrow> </math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JPCS_1530_1_012025_ieqn1.gif" xlink:type="simple"></inline-graphic> </inline-formula> and <inline-formula> <tex-math><?CDATA ${\rm{N}} \cap \mathop {\rm{K}}\limits^\prime { \ll _{\rm{J}}}\mathop {\rm{K}}\limits^\prime $?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mrow> <mi mathvariant="normal">N</mi> <mo>∩</mo> <mover> <mi mathvariant="normal">K</mi> <mo>′</mo> </mover> <msub> <mo>≪</mo> <mi mathvariant="normal">J</mi> </msub> <mover> <mi mathvariant="normal">K</mi> <mo>′</mo> </mover> </mrow> </math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JPCS_1530_1_012025_ieqn2.gif" xlink:type="simple"></inline-graphic> </inline-formula>. The am of this paper is to introduce properties of J–lifting modules. Especially, we give characterizations of J–lifting modules.We introduce J–coessential submodule as a generalization of coessential submodule . Finally, we give some conditions under which the quotient and direct sum of J–lifting modules is J–lifting.</p>
Scopus Crossref
View Publication
Publication Date
Thu Feb 28 2019
Journal Name
Iraqi Journal Of Science
On µ-lifting Modules
...Show More Authors

Let R be a ring with identity and let M be a left R-module. M is called µ-lifting modulei f for every sub module A of M, There exists a direct summand D of M such that M = D D', for some sub module D' of M such that AD and A D'<<µ D'. The aim of this paper is to introduce properties of µ-lifting modules. Especially, we give characterizations of µ-lifting modules. On the other hand, the notion of amply µ-supplemented iis studied as a generalization of amply supplemented modules, we show that if M is amply µ-supplemented such that every µ-supplement sub module of M

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
On Goldie lifting modules
...Show More Authors

On Goldie lifting modules

View Publication Preview PDF
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Discrete Mathematical Sciences And Cryptography
On large-hollow lifting modules
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
⊕-J-supplemented modules
...Show More Authors

Scopus (1)
Scopus
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
On Hollow – J–Lifting Modules
...Show More Authors

In this paper, we introduce and study the concepts of hollow – J–lifting modules and FI – hollow – J–lifting modules as a proper generalization of both hollow–lifting and J–lifting modules . We call an R–module M as hollow – J – lifting if for every submodule N of M with is hollow, there exists a submodule K of M such that M = K Ḱ and K N in M . Several characterizations and properties of hollow –J–lifting modules are obtained . Modules related to hollow – J–lifting modules are  given .

View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
J-semi regular modules
...Show More Authors
Abstract<p>Let <italic>R</italic> be a ring with identity and let <italic>M</italic> be a left R-module. <italic>M</italic> is called J-semiregular module if every cyclic submodule of <italic>M</italic> is J-lying over a projective summand of <italic>M</italic>, The aim of this paper is to introduce properties of J-semiregular module Especially, we give characterizations of J-semiregular module. On the other hand, the notion of J-semi hollow modules is studied as a generalization of semi hollow modules, finally <italic>F</italic>-J-semiregular modules is studied as a generalization of <italic>F</italic>-semiregular modules.</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Quasi J-Regular Modules
...Show More Authors

Throughout this note, R is commutative ring with identity and M is a unitary R-module. In this paper, we introduce the concept of quasi J-  submodules as a     –  and give some of its basic properties. Using this concept, we define the class of quasi J-regular modules, where an R-module     J- module if every submodule of  is quasi J-pure. Many results about this concept

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon May 31 2021
Journal Name
Iraqi Journal Of Science
FI--J-supplemented modules
...Show More Authors

A Module M is called cofinite  J- Supplemented  Module  if for every  cofinite submodule L of  M, there exists a submodule N of M such that M=L+N with   main properties of cof-J-supplemented modules.  An R-module M is called fully invariant-J-supplemented if for every fully invariant submodule N of M, there exists a submodule K of M, such that M = N + K with N  K K. A condition under which the direct sum of FI-J-supplemented modules is FI-J-supplemented was given. Also, some types of modules that are related to the FI-J-supplemented module were discussed.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
On Large-Lifting and Large-Supplemented Modules
...Show More Authors

      In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules.  We also give some results and properties of this new kind of modules.

Scopus (1)
Scopus Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
On Large-Lifting and Large-Supplemented Modules
...Show More Authors

      In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules.  We also give some results and properties of this new kind of modules.

View Publication Preview PDF
Scopus (1)
Scopus Crossref