Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that
In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
Let be a commutative ring with identity, and be a unitary left R-module. In this paper we, introduce and study a new class of modules called pure hollow (Pr-hollow) and pure-lifting (Pr-lifting). We give a fundamental, properties of these concept. also, we, introduce some conditions under which the quotient and direct sum of Pr-lifting modules is Pr-lifting.
Let
Throughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.
Jordan curve theorem is one of the classical theorems of mathematics, it states the following : If is a graph of a simple closed curve in the complex plane the complement of is the union of two regions, being the common boundary of the two regions. One of the region is bounded and the other is unbounded. We introduced in this paper one of Jordan's theorem generalizations. A new type of space is discussed with some properties and new examples. This new space called Contractible -space.