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Abstract. The concept of small monoform module was introduced by Hadi and
Marhun, where a module U is called small monoform if for each non-zero submodule V
of U and for every non-zero homomorphism f ∈ HomR(V,U), implies that ker f is small
submodule of V. In this paper the author dualizes this concept; she calls it co-small
monoform module. Many fundamental properties of co-small monoform module are
given. Partial characterization of co-small monoform module is established. Also, the
author dualizes the concept of small quasi-Dedekind modules which given by Hadi and
Ghawi. She show that co-small monoform is contained properly in the class of the dual
of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform
are investigated. Other generalizations of co-small monoform are introduced.

Keywords: essential submodules, small monoform modules, Co-small monoform mod-
ules.

1. Introduction

”Throughout this paper, all rings R are commutative with identity and all mod-
ules are unitary left R-modules. A submodule V of an R-module U is called
small if (denoted by V ≪ U) if, for every proper submodule L of U, V +L ̸= U
([3], P.20)”. ”A non-zero module U is called monoform if for each non-zero
homomorphism f ∈ HomR(V,U) with every non-zero submodule V of U ; f
is monomorphism [8]”. In 2014, Hadi and Marhun introduced the concept of
small monoform module as a generalization of monoform module, ”where an R-
module U is called small monoform if for each non-zero submodule V of U and
for each non-zero homomorphism f ∈ HomR(V,U); ker f is small submodule
of V [8]”. ”A submodule V of U is called essential (denoted by V ≤e U if every
non-zero submodule of U has a non-zero intersection with V ([3], P.15)”.

The main goal of this work is to dualize the concept of small monoform
module; we call it co-small monoform module, where a non-zero R-module U
is called co-small monoform if for each proper submodule V of U and for ev-
ery non-zero homomorphism f : U → U

V ; f(U) is essential submodule of U
V .

This paper consists of five sections, in section 2; fundamental properties of co-
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small monoform are investigated. We prove that under the class of co-small
monoform modules, the class of small submodules coincides with the class of
e-small submodules, see theorem (2.13), ”where a submodule V of U is called
e-small if N + W = U with W ≤e U , implies that W = U [15]”. In section 3;
the relationship of co-small monoform module with coquasi-Dedekind module is
studied, see proposition (3.1) and proposition (3.7). Also, we show that every
coquasi-Dedekind ring is co-small monoform, see corollary (3.4). In section 4; we
show that epiform, anti-hopfian and almost finitely generated modules are sub-
classes of co-small monoform modules. Section 5 is devoted to introduce some
generalizations of co-small monoform module such as co-small quasi-Dedekind,
relatively co-small monoform and E-coprime modules. Besides, partial equiva-
lent between co-small monoform module and each one of these generalizations
are obtained, see theorems (5.3) and (5.6).

2. Co-small monoform modules

In this section we introduce the dual notion of small monoform module, we start
by following.

Definition 2.1. A non-zero module R-module U is called co-small monoform
module if for each proper submodule V of U and for every non-zero homomor-
phism f : U → U

V ; f(U) is essential submodule of UV . A ring R is called co-small
monoform if R is co-small monoform R-module.

Remarks and Examples 2.2. i. Every simple module is co-small mono-
form module. Since if U is small, then the only proper submodule of
U is (0), and by Schur’s Lemma, for each non-zero homomorphism f ∈
(HomR(U, U(0))); f is epimorphism ([12], P.73), hence f(U) ≤e

U
(0) .

ii. Semisimple module is not co-small monoform module, as we will see in
remark (3.6)(b).

iii. The set of integer numbers Z as Z-module is not co-small monoform mod-
ule. In fact if we consider the homomorphism f : Z → Z

6Z which is defined
by f(x) = 3x+ 6Z for all x ∈ Z. Clearly Z

6Z
∼= Z6, and f(Z) = 3Z

6Z
∼= (3̄)

and (3̄) is not essential submodule of Z6.

iv. The Z-module Z4 is a co-small monoform module. In fact the only non-
zero homomorphism f ∈ (HomR(Z4,

Z4

(2̄)
)) is defined as: f(x) = 2x ∀x ∈ Z,

so f(Z4) = (2̄) is essential submodule of Z4

(2̄)
.

v. ZP∞ is a co-small monoform Z-module, see Proposition 4.8.

vi Uniform module may not be co-small monoform, ”where an R-module U
is called uniform if all non-zero submodules of U are essential in U [2]”.
For example Z is a uniform Z-module, but it is not co-small monoform as
we verified in (iii).
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Proposition 2.3. If all non-zero factor of an R-module U is uniform, then U
is a co-small monoform module.

Proof. Let f : U → U
V be a non-zero homomorphism, and V be a proper

submodule of U. Note that U
V ̸= 0, and since U

V is a uniform module, then
f(U) ≤e

U
V , and we are done. �

Remark 2.4. If we replace the word ”all” in the proposition (2.3), by ”there
exists”, then we cannot guarantee U is co-small monoform. In fact in example
(2.2)(iii) we see that Z is not co-small monoform. Note that not all non-zero
factor of Z are uniform modules.

Hadi and Marhun in [8] proved that an epimorphic image of small monoform
is not necessarily small monoform. For co-small monoform modules we have the
following.

Proposition 2.5. The epimorphic image of co-small monoform module is co-
small monoform.

Proof. Assume that U is a co-small monoform module and f : U → U1 is
an epimorphism, where U1 is any R-module. Let g : U1 → U1

V1
be a non-zero

homomorphism where V1 is any proper submodule of U1, so we have following
compositions of homomorphisms:

U
f // U1

g // U1
V1

h // U
f−1(V )

Where h is defend as follows: for u1 ∈ U1, since f is an epimorphism, then
there exists u ∈ U such that f(u) = u1. So set h(u1 + V1) = u + f−1(V1) for
each u1 ∈ U1. One can show that h is an isomorphism. Since U is co-small
monoform module, then ((hgf)(U)) ≤e

U
f−1(V1)

. We claim that g(U1) ≤e
U1
V1

, to

show that; (hgf)(U) = (hg)(U1) ≤e
U

f−1(V1)
. This implies that h−1((hg)(U1)) ≤e

h−1( U
f−1(V1)

) ([3], Prop.(1.1), P.16). But h is an isomorphism, thus g(U1) ≤e
U1
V1

,

hence U1 is co-small monoform. �

Corollary 2.6. The quotient of co-small monoform module is co-small mono-
form.

Corollary 2.7. A direct summand of co-small monoform module is co-small
monoform.

Proof. Let U = V1⊕V2 , where both of V1 and V2 are submodules of U. Consider
the projection homomorphism f : U → V1. Since U is a co-small monoform
module, then by corollary (2.6); U

V 2
is co-small monoform. But V1 ∼= U

V2
, thus

V1 is co small. �
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Remark 2.8. The direct sum of co-small monoform module may not be co-
small monoform; for example both of Z2 and Z3 are simple Z-modules, hence
they are co-small monoform modules. But the Z-module Z2 ⊕Z3 is not, in fact
Z2 ⊕ Z3

∼= Z6 which is semisimple, and by example (2.2)(ii) it is not co-small
monoform module.

Proposition 2.9. Let U be a co-small monoform module, then for each element
0 ̸= r ∈ R; either rU = 0 or rU ≤e U .

Proof. Let 0 ̸= r ∈ R and f ∈ EndR(U) defined by fr(u) = ru ∀u ∈ U . Assume
that rU ̸= 0, then f ̸= 0. But U is co-small monoform, then f(U) ≤e U . Thus
rU ≤e U . �

”Recall that an R-module U is called divisible, if rU = U for every non-zero
divisor element r ∈ R ([3], P.102)”. This concept and proposition (2.9) led us
to introduce the following concept.

Definition 2.10. An R-module U is called essentially divisible if rU ≤e U for
each non-zero divisor element r ∈ R.

Remark 2.11. i. ”It is clear that every divisible R-module is essentially
divisible. The converse is not true in general”, for example: Z is essentially
divisible Z-module, in fact rZ ≤e Z ∀ 0 ̸= r ∈ Z while Z is not divisible.

ii. If a module U is semisimple, then we can easily show that the class of
divisible module coincides with the class of essentially divisible module.

Proof (ii). Let 0 ̸= r ∈ R, since U is essentially divisible, then rU ≤e U .
But U is semisimple, therefore rU ≤c U , hence rU = U . �

Proposition 2.12. If U is faithful co-small monoform module then U is essen-
tially divisible.

Proof. Let 0 ̸= r ∈ R, since U is co-small monoform, then by proposition (2.9)
either rU = 0 or rU ≤e U . If rU = 0 and since U is faithful, then r = 0. But
this is a contradiction, therefore rU ≤e U . �

In the following proposition we use co-small monoform as a useful condition
under which e-small submodule can be small.

Theorem 2.13. Let U be a co-small monoform module, then V is small sub-
module if and only if V is e-small.

Proof. The necessity is clear. Conversely, Assume that V is an e-small sub-
module, and let V + L = U where L ≤ U . Define Ψ : U → U

V ∩L as follows:
∀u ∈ U ;u = x+y where x ∈ V and y ∈ L. Set Ψ(u) = y+V ∩L. It is clear that
Ψ is well defined and homomorphism. If Ψ = 0, then y ∈ V for all y ∈ L. This
implies that L ⊆ V , hence V = U . But this is a contradiction, thus Ψ ̸= 0. Since
U is co-small monoform, then Ψ(U) ≤e ( U

V ∩L), so that ( L
V ∩L) ≤e ( U

V ∩L). Thus
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L ≤e U ([12], Exc.(1.64), P.32). On the other hand, V is an e-small submodule,
therefore L = U that is V is a small submodule of U. �

”An R-module U is called hollow if every proper submodule of U is small,
and U is called e-hollow if every proper submodule V of U e-small [4]”.

Corollary 2.14. Let U be a co-small monoform module, then U is hollow mod-
ule if and only if U is e-hollow module.

Proof. The necessity is obvious. Conversely, assume that U is an e-hollow
module and let V � U . Since U is co-small monoform, so by theorem (2.13); V
is small submodule of U, hence U is a hollow module. �

”Recall that an R-module U is called couniform if every proper submodule
V of U is either zero or there exists a proper submodule W of V such that
( VW ) ≪ ( UW ) [5]”.

Corollary 2.15. Let U be a co-small monoform module. If U is couniform and
Artinian then U is an e-hollow module.

Proof. Since U is a couniform and Artinian module, then U is hollow [5]. By
corollary (2.14), U is e-hollow. �

3. Co-small monoform and coquasi-Dedekind modules

”Recall that an R-module U is called coquasi-Dedekind if HomR(U, V ) = 0 for
each proper submodule V of U. Equivalently; U is coquasi-Dedekind if every
0 ̸= f ∈ EndR(U) is epimorphism [14]”. The two concepts co-small mono-
form module and coquasi-Dedekind are independent for example; The integer
numbers Z-module Z is a coquasi-Dedekind module. But it is not co-small
monoform, see (2.2)(iii). On the other hand, Z4 is co-small monoform as we
have be seen in example (2.2)(iv), while it is not coquasi-Dedekind [14]. In fact
we will show later that in the category of rings; every coquasi-Dedekind ring is
co-small monoform.

However, this section is devoted to study how can be relate between them,
before that; an R-module U is called self-generator if for every submodule V of
U, V = Σff(U) where f ∈ HomR(U, V ) [11].

Proposition 3.1. If U is a self-generator module, then every coquasi-Dedekind
module is co-small monoform.

Proof. Let V be a proper submodule of the self-generator module U, thenV =
Σff(U) where f ∈ HomR(U, V ). Since U is coquasi-Dedekind, thenHomR(U, V ) =
0, hence f = 0. This implies that V = Σff(U) = 0, therefore U is simple. By
example (2.2)(i), U is co-small monoform. �

”An R-module U is called multiplication if for every submodule V of U,
there exists an ideal I of R such that V = IU [11]”. Since every multiplication
module is self-generator [11], then we have the following.
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Corollary 3.2. If U is a multiplication module, then every coquasi-Dedekind
module is co-small monoform.

Since any ring R is multiplication R-module, so by using corollary (3.2) we
deduce the following implication in the category of rings.

Corollary 3.3. Every coquasi-Dedekind ring is a co-small monoform ring.

Corollary 3.4. Every cyclic coquasi-Dedekind module is a co-small monoform
module.

Now, we give a useful property for co-small monoform module.

Proposition 3.5. Every co-small monoform module satisfies the following:
condition (∗): For every non-zero f ∈ EndR(U); f(U) ≤e U .

Proof. Let U be co-small monoform, and 0 ̸= f ∈ EndR(U). Let V be a proper
submodule of U, so we have the following composition of homomorphisms:

U
f // U

π // U
V

Since U is co-small monoform, then (πf)(U) ≤e (UV ). This implies that (f(U)
V ) ≤e

(UV ), hence f(U) ≤e U ([12], Exc (1.64), P.32). �

Remark 3.6. a. The converse of proposition (3.5) is not true in general, for
example the set of rational numbers Q is a uniform Z-module so every
non-zero submodule of Q is essential, in particular f(U) ≤e U . On the
other hand Q is not co-small monoform. In fact Q is a torsion free module
and Q

Z is torsion, therefore HomR(Q, QZ ) = 0, that is f(Q) �e
Q
Z . Thus Q

is not co-small monoform.

b. We can use proposition (3.5) to show that the semisimple module is not
co-small monoform, in fact if U is co-small monoform , then by proposition
(3.5), for any proper submodule V of an R-module U and any non-zero
homomorphism f ∈ EndR(U); f(U) ≤e U . On the other hand, since U is
semisimple, then f(U) is a direct summand of U, so we have a contradic-
tion, thus U is not co-small monoform.

”Recall that a ring R is called (Von Newoman) regular if for each r ∈ R
there exists x ∈ R such that r = rxr ([2], P.(186))”.

Proposition 3.7. Let U be an R-module, with EndR(U) is regular ring, then
every co-small monoform module is coquasi-Dedekind.

Proof. Let 0 ̸= f ∈ EndR(U), and V be a proper submodule of U. Consider
the following composition of homomorphisms:

U
f // U

π // U
V
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It is clear that πf is a non-zero homomorphism. Since U is co-small monoform,
then (πf)(U) ≤e

U
V . This implies that f(U)

V ≤e
U
V , hence f(U) ≤e U ([12],

Exe.(1.64), P.32), but EndR(U) is a regular ring, then f(U) is a direct summand
of U [3]. Thus f(U) = U , that is U is coquasi-Dedekind. �

Note the condition ”EndR(U) is regular ring” in proposition (3.7) is nec-
essary, because if EndR(U) is not regular, we cannot guarantee that every co-
small monoform module is coquasi-Dedekind. For example the Z-module Z4 is
co-small monoform as we saw in (2.2)(iv), but Z4 is not coquasi-Dedekind [14],
in fact EndR(Z4) ∼= Z4 which is not regular ring.

Corollary 3.8. Every semisimple co-small monoform module is coquasi-Dede-
kind.

Proof. Assume that U is co-small monoform, since U is semisimple, then
End(U) is regular ([12], P.91), and the result follows by proposition (3.7). �

4. Subclasses of co-small monoform modules

In this section we show that epiform, anti-hopfian and almost finitely generated
are contained in the class of co-small monoform modules.” A non-zero module
U is called epiform if every non-zero homomorphism f : U → U

V with V a proper
submodule of U is an epimorphism [2]. Equivalently; U is epiform if every proper
submodule of U is corational, where a submodule V of U is called corational if
HomR(U, VW ) = 0 for all submodules W of U such that W ⊆ V ⊆ U ([2], P.85)”.

Remark 4.1. It can be easily show that each epiform module is co-small mono-
form, but the reverse is not always true; for example Z4 is co-small monoform,
see example (2.2)(iv) , but not epiform, to see this; if Z4 is epiform, then ev-
ery proper submodule of U is corational, but clearly the submodule (2̄) is not
corational, so Z4 is not epiform.

As applications of (4.1), we have the following two propositions. The first
one is about the relationship between co-small monoform and hollow modules.
In fact there is no direct implication between co-small monoform and hollow
modules; however, we can relate them by using the class of noncosingular mod-
ule, ”where a module U is called noncosingular if for any non-zero R-module T
and for every nonzero homomorphism f : U → T ; f(U) is not small submodule
of T [5]”.

Proposition 4.2. Let U be a noncosingular module. If U is hollow then U is a
co-small monoform module.

Proof. Suppose that U is a hollow module. Since U is noncosingular, then U
is epiform [1], and by remark (4.1), U is co-small monoform. �

”Recall that an R-module U is called cosemisimple if Rad(UV ) = 0 for all
submodules V of U [2]. The second application of remark (4.1) is given by the
following.
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Proposition 4.3. Let U be a couniform module. If U is Artinian and cosemisim-
ple, then U is a co-small monoform module.

Proof. Since U is couniform and Artinian, then U is a hollow module. But U is
cosemisimple, thus U is epiform [1], hence U is a co-small monoform module.�

Theorem 4.4. Let U be a self-generator semisimple module, then the following
statements are equivalent:

1. U is a simple module.

2. U is an epiform module.

3. U is a co-small monoform module.

4. U is a coquasi-Dedekind module.

Proof. (1) ⇒ (2) [1]
(2) ⇒ (3) It is clear.
(3) ⇒ (4) Since U is co-small monoform and semisimple, then by corollary (3.8),
U is coquasi-Dedekind.
(4) ⇒ (1) Since U coquasi-Dedekind and self-generator, then by proposition
(3.1), U is simple. �

”Recall that an R-module U is called anti-hopfian if U is not simple and all
non-zero factor modules of U are isomorphic to U; that is U is not simple and
U
V

∼= U for every proper submodule V of U [9,10]. The following proposition
shows that the anti-hopfian module is subclass of co-small monoform modules.

Proposition 4.5. Every anti-hopfian module is co-small monoform.

Proof. Since U is anti-hopfian, then U is an epiform module [6], and by remark
(4.1), U is co-small monoform. �

By using the concept of anti-hopfian we have the following.

Proposition 4.6. If U is a coquasi-Dedekind module such that every proper
submodule of U is anti-hopfian, then U is a co-small monoform module.

Proof. Assume that U is coquasi-Dedekind module. Since every proper sub-
module of U is anti-hopfian, then U is an epiform ([6], Prop.(3.8)), hence U is
co-small monoform. �

”An R-module U is called almost finitely generated if U is not finitely gener-
ated and every proper submodule of U is finitely generated [13]”. We need the
following lemma which is appeared in [13].

Lemma 4.7. Let U be an almost finitely generated R-module. If U1 and U2

are almost finitely generated, then for all 0 ̸= f ∈ HomR(U1, U2); f is an
epimorphism.
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Proposition 4.8. Every almost finitely generated R-module is co-small mono-
form.

Proof. Suppose that U is an almost finitely generated. Let V be a proper
submodule of U and 0 ̸= f ∈ HomR(U, UV ). Note that U

V is almost finitely
generated [13], Prop.(1.1)), by lemma (4.7), f is an epimorphism, hence we are
through. �

The converse of proposition (4.8) is not true in general as the following
example shows.

Example 4.9. As we saw in example (2.2)(iv), that the Z-module Z4 is a
co-small monoform module, while it is not almost finitely generated, since Z4

is finitely generated. Thus the class of almost finitely generated is contained
properly in the class of co-small monoform module.

5. Some generalizations of co-small monoform modules

In this section; some generalizations of co-small monoform are introduced. We
start by the first one.

Definition 5.1. An R-module U is called co-small quasi-Dedekind if U satisfies
the condition (∗) in the proposition (3.5).

Remarks 5.2. a. It is worth mentioning to say that the class of co-small
quasi-Dedekind module forms a dual of the class of small quasi-Dedekind
which appeared in [7], ”where an R-module U is called small quasi-Dedekind
if for every 0 ̸= f ∈ EndR(U); kerf ≪ U”.

b. It is clear that every uniform module is co-small quasi-Dedekind.

Under certain conditions the class of co-small monoform coincides with the
class of co-small quasi-Dedekind modules as the following theorem shows.

Theorem 5.3. Let U be a self-projective uniform module, then U is co-small
monoform if and only if U is a co-small quasi-Dedekind module.

Proof. The necessity follows by proposition (3.5). Conversely, assume that U is
co-small quasi-Dedekind module, and f : U → U

V is a non-zero homomorphism
with a proper submodule V of U. Consider the following diagram:

U

f
��

g

����
��
��
��

U
π // U

V

Where π is the natural epimorphism. Since U is a self-projective module,
then there exists a homomorphism g : U → U such that (πg) = f . It is clear
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that (πg) ̸= 0 and homomorphism. By assumption, g(U) ≤e U , since U is
uniform then V ≤e U . This implies that (πg)(U) ≤e π(U) ([12], Prop.(2.6),
P.76), hence f(U) ≤e

U
V , thus U is co-small monoform. �

We have mentioned in remark (2.2)(vi) that uniform module is not necessary
co-small monoform, as consequence of theorem (5.3) we have the following.

Corollary 5.4. If U is a uniform and self-projective module, then U is co-small
monoform.

Proof. Since U is uniform, then by (5.2)(b), U is co-small quasi-Dedekind. But
U is self-projective, so by (5.3), U is a co-small monoform module. �

Now, we introduce another type for the generalizations of co-small monoform
module.

Definition 5.5. ”An R-module U is called relatively co-small monoform if for
every proper closed submodule V of U and every non-zero homomorphism f :
U → U

V ; f(U) ≤e
U
V ”.

”It is clear that every co-small monoform is relatively co-small monoform,
but the converse is not true in general, for example”: in the Z-module Z; the
only closed submodule is (0), so clearly Z is relatively co-small monoform, but
it is not co-small monoform, see example (2.2)(iii).

Theorem 5.6. For a semisimple module U, the following statements are
equivalent:

i. U is a co-small monoform module.

ii. U is a relatively co-small monoform module.

Proof. (i) ⇒ (ii) It is straightforward.
(ii) ⇒ (i) Let V a proper submodule of U, and f : U → U

V be a non-zero
homomorphism. Since U is semisimple, then V is closed, and by assumption we
get the result. �

Proposition 5.7. Every uniform module is relatively co-small monoform mod-
ule.

Proof. Let U be a uniform module, so the only proper closed submodule in U
is (0), and for every non-zero homomorphism f : U → U

(0) ; f(U) ≤e
U
(0) . That is

U is relativly co-small monoform.. �
It is well-known that every non-zero extending and indecomposable module

is uniform, so we have the following.

Corollary 5.8. If U is a non-zero extending and indecomposable module, then
U is relatively co-small monoform..
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Following [14], a non-zero module U is called coprime if for each element
of R, either rU = 0 or rU = U . This motivates us to introduce the third
generalizations of co-small monoform module; we call it an E-coprime module.

Definition 5.9. A non-zero module U is called E-coprime if for each non-zero
element r of R, either rU = 0 or rU ≤e U .

It is clear that every a coprime module is E-coprime.

Remark 5.10. i. Every co-small monoform module is E-coprime.

ii. If ann(UV ) = ann(U) for each proper submodule V of U, then U is E-
coprime.

Proof. i. The result follows directly by proposition (2.9).
ii. Let r ∈ R, and assume that rU �e U , then rU is a proper submodule

of U. By assumption ann(U) = ann(UV ). Now, r( UrU ) = 0, this implies that
r ∈ ann(U), hence rU = 0. �

The following theorem gives a partial characterization of E-coprime module.

Theorem 5.11. Let U be a semisimple module, then U is E-coprime if and
only if ann(UV ) = ann(U) for each proper submodule V of U.

Proof. Suppose that U is an E-coprime module, and V be a proper submodule
of U. Let t ∈ ann(UV ), then tU ⊆ V . But V is proper, so tU ̸= U . Since U is
semisimple, then tU �e U . But U is E-coprime, therefore tU = 0, hence t ∈
ann(U). On the other hand, clearly ann(U) ⊆ ann(UV ), thus ann(U) = ann(UV ).
The sufficiency follows by remark (5.10)(ii). �
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