Co-small monoform modules

Muna Abbas Ahmed

Department of Mathematics College of Science for Women University of Baghdad Baghdad Iraq drmunaabbas@qmail.com

Abstract. The concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism $f \in Hom_R(V, U)$, implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investigated. Other generalizations of co-small monoform are introduced.

Keywords: essential submodules, small monoform modules, Co-small monoform modules.

1. Introduction

"Throughout this paper, all rings R are commutative with identity and all modules are unitary left *R*-modules. A submodule V of an *R*-module U is called small if (denoted by $V \ll U$) if, for every proper submodule L of U, $V + L \neq U$ ([3], P.20)". "A non-zero module U is called monoform if for each non-zero homomorphism $f \in Hom_R(V, U)$ with every non-zero submodule V of U; fis monomorphism [8]". In 2014, Hadi and Marhun introduced the concept of small monoform module as a generalization of monoform module, "where an *R*module U is called small monoform if for each non-zero submodule V of U and for each non-zero homomorphism $f \in Hom_R(V, U)$; ker f is small submodule of V [8]". "A submodule V of U is called essential (denoted by $V \leq_e U$ if every non-zero submodule of U has a non-zero intersection with V ([3], P.15)".

The main goal of this work is to dualize the concept of small monoform module; we call it co-small monoform module, where a non-zero *R*-module U is called co-small monoform if for each proper submodule V of U and for every non-zero homomorphism $f: U \to \frac{U}{V}$; f(U) is essential submodule of $\frac{U}{V}$. This paper consists of five sections, in section 2; fundamental properties of co-

small monoform are investigated. We prove that under the class of co-small monoform modules, the class of small submodules coincides with the class of *e*-small submodules, see theorem (2.13), "where a submodule V of U is called *e*-small if N + W = U with $W \leq_e U$, implies that W = U [15]". In section 3; the relationship of co-small monoform module with coquasi-Dedekind module is studied, see proposition (3.1) and proposition (3.7). Also, we show that every coquasi-Dedekind ring is co-small monoform, see corollary (3.4). In section 4; we show that epiform, anti-hopfian and almost finitely generated modules are subclasses of co-small monoform modules. Section 5 is devoted to introduce some generalizations of co-small monoform module such as co-small quasi-Dedekind, relatively co-small monoform and E-coprime modules. Besides, partial equivalent between co-small monoform module and each one of these generalizations are obtained, see theorems (5.3) and (5.6).

2. Co-small monoform modules

In this section we introduce the dual notion of small monoform module, we start by following.

Definition 2.1. A non-zero module R-module U is called co-small monoform module if for each proper submodule V of U and for every non-zero homomorphism $f: U \to \frac{U}{V}$; f(U) is essential submodule of $\frac{U}{V}$. A ring R is called co-small monoform if R is co-small monoform R-module.

- **Remarks and Examples 2.2.** i. Every simple module is co-small monoform module. Since if U is small, then the only proper submodule of U is (0), and by Schur's Lemma, for each non-zero homomorphism $f \in$ $(Hom_R(U, \frac{U}{(0)})); f$ is epimorphism ([12], P.73), hence $f(U) \leq_e \frac{U}{(0)}$.
 - ii. Semisimple module is not co-small monoform module, as we will see in remark (3.6)(b).
 - iii. The set of integer numbers Z as Z-module is not co-small monoform module. In fact if we consider the homomorphism $f: Z \to \frac{Z}{6Z}$ which is defined by f(x) = 3x + 6Z for all $x \in Z$. Clearly $\frac{Z}{6Z} \cong Z_6$, and $f(Z) = \frac{3Z}{6Z} \cong (\bar{3})$ and $(\bar{3})$ is not essential submodule of Z_6 .
 - iv. The Z-module Z_4 is a co-small monoform module. In fact the only nonzero homomorphism $f \in (Hom_R(Z_4, \frac{Z_4}{(2)}))$ is defined as: $f(x) = 2x \ \forall x \in Z$, so $f(Z_4) = (\overline{2})$ is essential submodule of $\frac{Z_4}{(2)}$.
 - v. $Z_{P^{\infty}}$ is a co-small monoform Z-module, see Proposition 4.8.
 - vi Uniform module may not be co-small monoform, "where an *R*-module U is called uniform if all non-zero submodules of U are essential in U [2]". For example Z is a uniform Z-module, but it is not co-small monoform as we verified in (iii).

Proposition 2.3. If all non-zero factor of an *R*-module *U* is uniform, then *U* is a co-small monoform module.

Proof. Let $f : U \to \frac{U}{V}$ be a non-zero homomorphism, and V be a proper submodule of U. Note that $\frac{U}{V} \neq 0$, and since $\frac{U}{V}$ is a uniform module, then $f(U) \leq_e \frac{U}{V}$, and we are done.

Remark 2.4. If we replace the word "all" in the proposition (2.3), by "there exists", then we cannot guarantee U is co-small monoform. In fact in example (2.2)(iii) we see that Z is not co-small monoform. Note that not all non-zero factor of Z are uniform modules.

Hadi and Marhun in [8] proved that an epimorphic image of small monoform is not necessarily small monoform. For co-small monoform modules we have the following.

Proposition 2.5. The epimorphic image of co-small monoform module is cosmall monoform.

Proof. Assume that U is a co-small monoform module and $f : U \to U_1$ is an epimorphism, where U_1 is any *R*-module. Let $g : U_1 \to \frac{U_1}{V_1}$ be a non-zero homomorphism where V_1 is any proper submodule of U_1 , so we have following compositions of homomorphisms:

$$U \xrightarrow{f} U_1 \xrightarrow{g} \frac{U_1}{V_1} \xrightarrow{h} \frac{U}{f^{-1}(V)}$$

Where h is defend as follows: for $u_1 \in U_1$, since f is an epimorphism, then there exists $u \in U$ such that $f(u) = u_1$. So set $h(u_1 + V_1) = u + f^{-1}(V_1)$ for each $u_1 \in U_1$. One can show that h is an isomorphism. Since U is co-small monoform module, then $((hgf)(U)) \leq_e \frac{U}{f^{-1}(V_1)}$. We claim that $g(U_1) \leq_e \frac{U_1}{V_1}$, to show that; $(hgf)(U) = (hg)(U_1) \leq_e \frac{U}{f^{-1}(V_1)}$. This implies that $h^{-1}((hg)(U_1)) \leq_e h^{-1}(\frac{U}{f^{-1}(V_1)})$ ([3], Prop.(1.1), P.16). But h is an isomorphism, thus $g(U_1) \leq_e \frac{U_1}{V_1}$, hence U_1 is co-small monoform.

Corollary 2.6. The quotient of co-small monoform module is co-small monoform.

Corollary 2.7. A direct summand of co-small monoform module is co-small monoform.

Proof. Let $U = V_1 \oplus V_2$, where both of V_1 and V_2 are submodules of U. Consider the projection homomorphism $f : U \to V_1$. Since U is a co-small monoform module, then by corollary (2.6); $\frac{U}{V_2}$ is co-small monoform. But $V_1 \cong \frac{U}{V_2}$, thus V_1 is co small. \Box **Remark 2.8.** The direct sum of co-small monoform module may not be cosmall monoform; for example both of Z_2 and Z_3 are simple Z-modules, hence they are co-small monoform modules. But the Z-module $Z_2 \oplus Z_3$ is not, in fact $Z_2 \oplus Z_3 \cong Z_6$ which is semisimple, and by example (2.2)(ii) it is not co-small monoform module.

Proposition 2.9. Let U be a co-small monoform module, then for each element $0 \neq r \in R$; either rU = 0 or $rU \leq_e U$.

Proof. Let $0 \neq r \in R$ and $f \in End_R(U)$ defined by $f_r(u) = ru \ \forall u \in U$. Assume that $rU \neq 0$, then $f \neq 0$. But U is co-small monoform, then $f(U) \leq_e U$. Thus $rU \leq_e U$. \Box

"Recall that an *R*-module U is called divisible, if rU = U for every non-zero divisor element $r \in R$ ([3], P.102)". This concept and proposition (2.9) led us to introduce the following concept.

Definition 2.10. An *R*-module *U* is called essentially divisible if $rU \leq_e U$ for each non-zero divisor element $r \in R$.

- **Remark 2.11.** i. "It is clear that every divisible *R*-module is essentially divisible. The converse is not true in general", for example: Z is essentially divisible Z-module, in fact $rZ \leq_e Z \forall 0 \neq r \in Z$ while Z is not divisible.
 - ii. If a module U is semisimple, then we can easily show that the class of divisible module coincides with the class of essentially divisible module.

Proof (ii). Let $0 \neq r \in R$, since U is essentially divisible, then $rU \leq_e U$. But U is semisimple, therefore $rU \leq_c U$, hence rU = U. \Box

Proposition 2.12. If U is faithful co-small monoform module then U is essentially divisible.

Proof. Let $0 \neq r \in R$, since U is co-small monoform, then by proposition (2.9) either rU = 0 or $rU \leq_e U$. If rU = 0 and since U is faithful, then r = 0. But this is a contradiction, therefore $rU \leq_e U$.

In the following proposition we use co-small monoform as a useful condition under which *e*-small submodule can be small.

Theorem 2.13. Let U be a co-small monoform module, then V is small submodule if and only if V is e-small.

Proof. The necessity is clear. Conversely, Assume that V is an e-small submodule, and let V + L = U where $L \leq U$. Define $\Psi : U \to \frac{U}{V \cap L}$ as follows: $\forall u \in U; u = x + y$ where $x \in V$ and $y \in L$. Set $\Psi(u) = y + V \cap L$. It is clear that Ψ is well defined and homomorphism. If $\Psi = 0$, then $y \in V$ for all $y \in L$. This implies that $L \subseteq V$, hence V = U. But this is a contradiction, thus $\Psi \neq 0$. Since U is co-small monoform, then $\Psi(U) \leq_e (\frac{U}{V \cap L})$, so that $(\frac{L}{V \cap L}) \leq_e (\frac{U}{V \cap L})$. Thus $L \leq_e U$ ([12], Exc.(1.64), P.32). On the other hand, V is an *e*-small submodule, therefore L = U that is V is a small submodule of U.

"An *R*-module U is called hollow if every proper submodule of U is small, and U is called *e*-hollow if every proper submodule V of U *e*-small [4]".

Corollary 2.14. Let U be a co-small monoform module, then U is hollow module if and only if U is e-hollow module.

Proof. The necessity is obvious. Conversely, assume that U is an e-hollow module and let $V \leq U$. Since U is co-small monoform, so by theorem (2.13); V is small submodule of U, hence U is a hollow module.

"Recall that an *R*-module U is called couniform if every proper submodule V of U is either zero or there exists a proper submodule W of V such that $\left(\frac{V}{W}\right) \ll \left(\frac{U}{W}\right)$ [5]".

Corollary 2.15. Let U be a co-small monoform module. If U is couniform and Artinian then U is an e-hollow module.

Proof. Since U is a couniform and Artinian module, then U is hollow [5]. By corollary (2.14), U is *e*-hollow.

3. Co-small monoform and coquasi-Dedekind modules

"Recall that an *R*-module U is called coquasi-Dedekind if $Hom_R(U, V) = 0$ for each proper submodule V of U. Equivalently; U is coquasi-Dedekind if every $0 \neq f \in End_R(U)$ is epimorphism [14]". The two concepts co-small monoform module and coquasi-Dedekind are independent for example; The integer numbers Z-module Z is a coquasi-Dedekind module. But it is not co-small monoform, see (2.2)(iii). On the other hand, Z_4 is co-small monoform as we have be seen in example (2.2)(iv), while it is not coquasi-Dedekind [14]. In fact we will show later that in the category of rings; every coquasi-Dedekind ring is co-small monoform.

However, this section is devoted to study how can be relate between them, before that; an *R*-module U is called self-generator if for every submodule V of U, $V = \sum_f f(U)$ where $f \in Hom_R(U, V)$ [11].

Proposition 3.1. If U is a self-generator module, then every coquasi-Dedekind module is co-small monoform.

Proof. Let V be a proper submodule of the self-generator module U, then $V = \Sigma_f f(U)$ where $f \in Hom_R(U, V)$. Since U is coquasi-Dedekind, then $Hom_R(U, V) = 0$, hence f = 0. This implies that $V = \Sigma_f f(U) = 0$, therefore U is simple. By example (2.2)(i), U is co-small monoform.

"An *R*-module U is called multiplication if for every submodule V of U, there exists an ideal I of R such that V = IU [11]". Since every multiplication module is self-generator [11], then we have the following.

Corollary 3.2. If U is a multiplication module, then every coquasi-Dedekind module is co-small monoform.

Since any ring R is multiplication R-module, so by using corollary (3.2) we deduce the following implication in the category of rings.

Corollary 3.3. Every coquasi-Dedekind ring is a co-small monoform ring.

Corollary 3.4. Every cyclic coquasi-Dedekind module is a co-small monoform module.

Now, we give a useful property for co-small monoform module.

Proposition 3.5. Every co-small monoform module satisfies the following: condition (*): For every non-zero $f \in End_R(U)$; $f(U) \leq_e U$.

Proof. Let U be co-small monoform, and $0 \neq f \in End_R(U)$. Let V be a proper submodule of U, so we have the following composition of homomorphisms:

$$U \xrightarrow{f} U \xrightarrow{\pi} \frac{U}{V}$$

Since U is co-small monoform, then $(\pi f)(U) \leq_e (\frac{U}{V})$. This implies that $(\frac{f(U)}{V}) \leq_e (\frac{U}{V})$, hence $f(U) \leq_e U$ ([12], Exc (1.64), P.32).

- **Remark 3.6.** a. The converse of proposition (3.5) is not true in general, for example the set of rational numbers Q is a uniform Z-module so every non-zero submodule of Q is essential, in particular $f(U) \leq_e U$. On the other hand Q is not co-small monoform. In fact Q is a torsion free module and $\frac{Q}{Z}$ is torsion, therefore $Hom_R(Q, \frac{Q}{Z}) = 0$, that is $f(Q) \not\leq_e \frac{Q}{Z}$. Thus Q is not co-small monoform.
 - b. We can use proposition (3.5) to show that the semisimple module is not co-small monoform, in fact if U is co-small monoform, then by proposition (3.5), for any proper submodule V of an *R*-module U and any non-zero homomorphism $f \in End_R(U)$; $f(U) \leq_e U$. On the other hand, since U is semisimple, then f(U) is a direct summand of U, so we have a contradiction, thus U is not co-small monoform.

"Recall that a ring R is called (Von Newoman) regular if for each $r \in R$ there exists $x \in R$ such that r = rxr ([2], P.(186))".

Proposition 3.7. Let U be an R-module, with $End_R(U)$ is regular ring, then every co-small monoform module is coquasi-Dedekind.

Proof. Let $0 \neq f \in End_R(U)$, and V be a proper submodule of U. Consider the following composition of homomorphisms:

$$U \xrightarrow{f} U \xrightarrow{\pi} \frac{U}{V}$$

It is clear that πf is a non-zero homomorphism. Since U is co-small monoform, then $(\pi f)(U) \leq_e \frac{U}{V}$. This implies that $\frac{f(U)}{V} \leq_e \frac{U}{V}$, hence $f(U) \leq_e U$ ([12], Exe.(1.64), P.32), but $End_R(U)$ is a regular ring, then f(U) is a direct summand of U [3]. Thus f(U) = U, that is U is coquasi-Dedekind. \Box

Note the condition " $End_R(U)$ is regular ring" in proposition (3.7) is necessary, because if $End_R(U)$ is not regular, we cannot guarantee that every cosmall monoform module is coquasi-Dedekind. For example the Z-module Z_4 is co-small monoform as we saw in (2.2)(iv), but Z_4 is not coquasi-Dedekind [14], in fact $End_R(Z_4) \cong Z_4$ which is not regular ring.

Corollary 3.8. Every semisimple co-small monoform module is coquasi-Dedekind.

Proof. Assume that U is co-small monoform, since U is semisimple, then End(U) is regular ([12], P.91), and the result follows by proposition (3.7).

4. Subclasses of co-small monoform modules

In this section we show that epiform, anti-hopfian and almost finitely generated are contained in the class of co-small monoform modules." A non-zero module U is called epiform if every non-zero homomorphism $f: U \to \frac{U}{V}$ with V a proper submodule of U is an epimorphism [2]. Equivalently; U is epiform if every proper submodule of U is corational, where a submodule V of U is called corational if $Hom_R(U, \frac{V}{W}) = 0$ for all submodules W of U such that $W \subseteq V \subseteq U$ ([2], P.85)".

Remark 4.1. It can be easily show that each epiform module is co-small monoform, but the reverse is not always true; for example Z_4 is co-small monoform, see example (2.2)(iv), but not epiform, to see this; if Z_4 is epiform, then every proper submodule of U is corational, but clearly the submodule $(\bar{2})$ is not corational, so Z_4 is not epiform.

As applications of (4.1), we have the following two propositions. The first one is about the relationship between co-small monoform and hollow modules. In fact there is no direct implication between co-small monoform and hollow modules; however, we can relate them by using the class of noncosingular module, "where a module U is called noncosingular if for any non-zero *R*-module T and for every nonzero homomorphism $f: U \to T$; f(U) is not small submodule of T [5]".

Proposition 4.2. Let U be a noncosingular module. If U is hollow then U is a co-small monoform module.

Proof. Suppose that U is a hollow module. Since U is noncosingular, then U is epiform [1], and by remark (4.1), U is co-small monoform. \Box

"Recall that an R-module U is called cosemisimple if $Rad(\frac{U}{V}) = 0$ for all submodules V of U [2]. The second application of remark (4.1) is given by the following.

Proposition 4.3. Let U be a couniform module. If U is Artinian and cosemisimple, then U is a co-small monoform module.

Proof. Since U is couniform and Artinian, then U is a hollow module. But U is cosemisimple, thus U is epiform [1], hence U is a co-small monoform module. \Box

Theorem 4.4. Let U be a self-generator semisimple module, then the following statements are equivalent:

- 1. U is a simple module.
- 2. U is an epiform module.
- 3. U is a co-small monoform module.
- 4. U is a coquasi-Dedekind module.

Proof. (1) \Rightarrow (2) [1]

 $(2) \Rightarrow (3)$ It is clear.

 $(3) \Rightarrow (4)$ Since U is co-small monoform and semisimple, then by corollary (3.8), U is coquasi-Dedekind.

(4) \Rightarrow (1) Since U coquasi-Dedekind and self-generator, then by proposition (3.1), U is simple. \Box

"Recall that an *R*-module U is called anti-hopfian if U is not simple and all non-zero factor modules of U are isomorphic to U; that is U is not simple and $\frac{U}{V} \cong U$ for every proper submodule V of U [9,10]. The following proposition shows that the anti-hopfian module is subclass of co-small monoform modules.

Proposition 4.5. Every anti-hopfian module is co-small monoform.

Proof. Since U is anti-hopfian, then U is an epiform module [6], and by remark (4.1), U is co-small monoform.

By using the concept of anti-hopfian we have the following.

Proposition 4.6. If U is a coquasi-Dedekind module such that every proper submodule of U is anti-hopfian, then U is a co-small monoform module.

Proof. Assume that U is coquasi-Dedekind module. Since every proper submodule of U is anti-hopfian, then U is an epiform ([6], Prop.(3.8)), hence U is co-small monoform. \Box

"An R-module U is called almost finitely generated if U is not finitely generated and every proper submodule of U is finitely generated [13]". We need the following lemma which is appeared in [13].

Lemma 4.7. Let U be an almost finitely generated R-module. If U_1 and U_2 are almost finitely generated, then for all $0 \neq f \in Hom_R(U_1, U_2)$; f is an epimorphism.

Proposition 4.8. Every almost finitely generated *R*-module is co-small monoform.

Proof. Suppose that U is an almost finitely generated. Let V be a proper submodule of U and $0 \neq f \in Hom_R(U, \frac{U}{V})$. Note that $\frac{U}{V}$ is almost finitely generated [13], Prop.(1.1)), by lemma (4.7), f is an epimorphism, hence we are through.

The converse of proposition (4.8) is not true in general as the following example shows.

Example 4.9. As we saw in example (2.2)(iv), that the Z-module Z_4 is a co-small monoform module, while it is not almost finitely generated, since Z_4 is finitely generated. Thus the class of almost finitely generated is contained properly in the class of co-small monoform module.

5. Some generalizations of co-small monoform modules

In this section; some generalizations of co-small monoform are introduced. We start by the first one.

Definition 5.1. An *R*-module *U* is called co-small quasi-Dedekind if *U* satisfies the condition (*) in the proposition (3.5).

- **Remarks 5.2.** a. It is worth mentioning to say that the class of co-small quasi-Dedekind module forms a dual of the class of small quasi-Dedekind which appeared in [7], "where an R-module U is called small quasi-Dedekind if for every $0 \neq f \in End_R(U)$; $kerf \ll U$ ".
 - b. It is clear that every uniform module is co-small quasi-Dedekind.

Under certain conditions the class of co-small monoform coincides with the class of co-small quasi-Dedekind modules as the following theorem shows.

Theorem 5.3. Let U be a self-projective uniform module, then U is co-small monoform if and only if U is a co-small quasi-Dedekind module.

Proof. The necessity follows by proposition (3.5). Conversely, assume that U is co-small quasi-Dedekind module, and $f: U \to \frac{U}{V}$ is a non-zero homomorphism with a proper submodule V of U. Consider the following diagram:

$$U \xrightarrow{g \\ f}_{T} U \xrightarrow{g}_{V} U$$

Where π is the natural epimorphism. Since U is a self-projective module, then there exists a homomorphism $g: U \to U$ such that $(\pi g) = f$. It is clear that $(\pi g) \neq 0$ and homomorphism. By assumption, $g(U) \leq_e U$, since U is uniform then $V \leq_e U$. This implies that $(\pi g)(U) \leq_e \pi(U)$ ([12], Prop.(2.6), P.76), hence $f(U) \leq_e \frac{U}{V}$, thus U is co-small monoform.

We have mentioned in remark (2.2)(vi) that uniform module is not necessary co-small monoform, as consequence of theorem (5.3) we have the following.

Corollary 5.4. If U is a uniform and self-projective module, then U is co-small monoform.

Proof. Since U is uniform, then by (5.2)(b), U is co-small quasi-Dedekind. But U is self-projective, so by (5.3), U is a co-small monoform module.

Now, we introduce another type for the generalizations of co-small monoform module.

Definition 5.5. "An *R*-module *U* is called relatively co-small monoform if for every proper closed submodule *V* of *U* and every non-zero homomorphism $f: U \to \frac{U}{V}$; $f(U) \leq_e \frac{U}{V}$ ".

"It is clear that every co-small monoform is relatively co-small monoform, but the converse is not true in general, for example": in the Z-module Z; the only closed submodule is (0), so clearly Z is relatively co-small monoform, but it is not co-small monoform, see example (2.2)(iii).

Theorem 5.6. For a semisimple module U, the following statements are equivalent:

- i. U is a co-small monoform module.
- ii. U is a relatively co-small monoform module.

Proof. (i) \Rightarrow (ii) It is straightforward.

(ii) \Rightarrow (i) Let V a proper submodule of U, and $f : U \to \frac{U}{V}$ be a non-zero homomorphism. Since U is semisimple, then V is closed, and by assumption we get the result.

Proposition 5.7. Every uniform module is relatively co-small monoform module.

Proof. Let U be a uniform module, so the only proper closed submodule in U is (0), and for every non-zero homomorphism $f: U \to \frac{U}{(0)}; f(U) \leq_e \frac{U}{(0)}$. That is U is relatively co-small monoform.

It is well-known that every non-zero extending and indecomposable module is uniform, so we have the following.

Corollary 5.8. If U is a non-zero extending and indecomposable module, then U is relatively co-small monoform..

Following [14], a non-zero module U is called coprime if for each element of R, either rU = 0 or rU = U. This motivates us to introduce the third generalizations of co-small monoform module; we call it an *E*-coprime module.

Definition 5.9. A non-zero module U is called E-coprime if for each non-zero element r of R, either rU = 0 or $rU \leq_e U$.

It is clear that every a coprime module is *E*-coprime.

Remark 5.10. i. Every co-small monoform module is *E*-coprime.

ii. If $ann(\frac{U}{V}) = ann(U)$ for each proper submodule V of U, then U is *E*-coprime.

Proof. i. The result follows directly by proposition (2.9).

ii. Let $r \in R$, and assume that $rU \nleq_e U$, then rU is a proper submodule of U. By assumption $ann(U) = ann(\frac{U}{V})$. Now, $r(\frac{U}{rU}) = 0$, this implies that $r \in ann(U)$, hence rU = 0.

The following theorem gives a partial characterization of E-coprime module.

Theorem 5.11. Let U be a semisimple module, then U is E-coprime if and only if $ann(\frac{U}{V}) = ann(U)$ for each proper submodule V of U.

Proof. Suppose that U is an *E*-coprime module, and V be a proper submodule of U. Let $t \in ann(\frac{U}{V})$, then $tU \subseteq V$. But V is proper, so $tU \neq U$. Since U is semisimple, then $tU \nleq_e U$. But U is E-coprime, therefore tU = 0, hence $t \in ann(U)$. On the other hand, clearly $ann(U) \subseteq ann(\frac{U}{V})$, thus $ann(U) = ann(\frac{U}{V})$. The sufficiency follows by remark (5.10)(ii).

Acknowledgments

The author would like to thank the referee(s) for all the suggestions and comments they have made which contributed improvement results of this paper.

References

- B.A. Al-Hashimi, M.A. Ahmed, Some results on epiform modules, J. Al-Anbar, Univ. for Pure Sci., 4 (2010), 54-56.
- [2] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, *Lifting modules*, Frontiers in Mathematics, Birkhauser-Basel, 2006.
- [3] K.R. Goodearl, *Ring theory, nonsingular rings and modules*, Marcel Dekker, New York and Basel, 1976.
- [4] I.M. Hadi, S.H. Aidi, e-Hollow modules, International J. Advanced Scientific and Technical Research, 3 (2015), 435-461.

- [5] I.M. Hadi, M.A. Ahmed, *Couniform modules*, Baghdad Sc. J., 10 (2013), 243-250.
- [6] I.M. Hadi, M.A. Ahmed, *Epiform* modules*, International Mathematical Forum, 7 (2012), 2749-2758.
- [7] I.M. Hadi, Th.Y. Ghawi, Small quasi-Dedekind modules, J. Al-Qadisiyah for Computer Science and Mathematics, 3 (2011), 88-98.
- [8] I.M. Hadi, H.K. Marhun, Small monoform modules, Ibn AL-Haitham J. Pure and Applied Sci., 27 (2014), 229-240.
- [9] Y. Hirano, I. Mogami, On restricted anti-hopfian modules, Math. J. Okayama Univ., 28 (1986), 119-131.
- [10] G. Oman, A. Salminen, modules which are isomorphic to their factor modules, Comm in Algebra, 41 (2013), 1300-1315.
- [11] N. Orhan, Fully idempotent multiplication modules, Palestine J. Mathematics, 3 (2014), 432-437.
- [12] A. Tercan, C. Yucel, Module theory. extending modules and generalizations, Springer International Publishing Switzerland, 2016.
- [13] W.D. Weakly, Modules whose proper submodules are finitely generated, J. Algebra, 84 (1983), 189-219.
- [14] S.M. Yasseen, Coquasi-Dedekined modules, Ph.D. Thesis, Univ. of Baghdad, 2003.
- [15] D.X. Zhou, X.R. Zhang, Small-essential submodules and morita duality, Southeast Asian Bull. Math., 35 (2011), 1051-1062.

Accepted: 23.02.2019