Most real-life situations need some sort of approximation to fit mathematical models. The beauty of using topology in approximation is achieved via obtaining approximation for qualitative subgraphs without coding or using assumption. The aim of this paper is to apply near concepts in the -closure approximation spaces. The basic notions of near approximations are introduced and sufficiently illustrated. Near approximations are considered as mathematical tools to modify the approximations of graphs. Moreover, proved results, examples, and counterexamples are provided.
The concept of Cech fuzzy soft bi-closure space ( ˇ Cfs bi-csp) ( ˇ U, L1, L2, S) is initiated and studied by the authors in [6]. The notion of pairwise fuzzy soft separated sets in Cfs bi-csp is defined in this study, and various features of ˇ this notion are proved. Then, we introduce and investigate the concept of connectedness in both Cfs bi-csps and its ˇ associated fuzzy soft bitopological spaces utilizing the concept of pairwise fuzzy soft separated sets. Furthermore, the concept of pairwise feebly connected is introduced, and the relationship between pairwise connected and pairwise feebly connected is discussed. Finally, we provide various instances to further explain our findings.
The idea of ech fuzzy soft bi-closure space ( bicsp) is a new one, and its basic features are defined and studied in [1]. In this paper, separation axioms, namely pairwise, , pairwise semi-(respectively, pairwise pseudo and pairwise Uryshon) - fs bicsp's are introduced and studied in both ech fuzzy soft bi-closure space and their induced fuzzy soft bitopological spaces. It is shown that hereditary property is satisfied for , with respect to ech fuzzy soft bi-closure space but for other mentioned types of separations axioms, hereditary property satisfies for closed subspaces of ech fuzzy soft bi-closure space.
The theory of general topology view for continuous mappings is general version and is applied for topological graph theory. Separation axioms can be regard as tools for distinguishing objects in information systems. Rough theory is one of map the topology to uncertainty. The aim of this work is to presented graph, continuity, separation properties and rough set to put a new approaches for uncertainty. For the introduce of various levels of approximations, we introduce several levels of continuity and separation axioms on graphs in Gm-closure approximation spaces.
The purpose of this paper is to evaluate the error of the approximation of an entire function by some discrete operators in locally global quasi-norms (Ld,p-space), we intend to establish new theorems concerning that Jackson polynomial and Valee-Poussin operator remain within the same bounds as bounded and periodic entire function in locally global norms (Ld,p), (0 < p £ 1).
The minimum approaches distance of probing electrons in scanning electron microscope has investigated in accordance to mirror effect phenomenon. The analytical expression for such distance is decomposed using the binomial expansion. With aid of resulted expansion, the distribution of trapped electrons within the sample surface has explored. Results have shown that trapped electron distributes with various forms rather an individual one. The domination of any shape is mainly depend on the minimum approaches distance of probing electrons
The aim of this paper is to generate topological structure on the power set of vertices of digraphs using new definition which is Gm-closure operator on out-linked of digraphs. Properties of this topological structure are studied and several examples are given. Also we give some new generalizations of some definitions in digraphs to the some known definitions in topology which are Ropen subgraph, α-open subgraph, pre-open subgraph, and β-open subgraph. Furthermore, we define and study the accuracy of these new generalizations on subgraps and paths.
Abstract
In this study, we compare between the autoregressive approximations (Yule-Walker equations, Least Squares , Least Squares ( forward- backword ) and Burg’s (Geometric and Harmonic ) methods, to determine the optimal approximation to the time series generated from the first - order moving Average non-invertible process, and fractionally - integrated noise process, with several values for d (d=0.15,0.25,0.35,0.45) for different sample sizes (small,median,large)for two processes . We depend on figure of merit function which proposed by author Shibata in 1980, to determine the theoretical optimal order according to min
... Show MoreThe purpose of this paper, is to study different iterations algorithms types three_steps called, new iteration,
In this paper the concepts of weakly (resp., closure, strongly) Perfect Mappings are defined and the important relationships are studied: (a) Comparison between deferent forms of perfect mappings. (b) Relationship between compositions of deferent forms of perfect mappings. (c) Investigate relationships between deferent forms of perfect mappings and their graphs mappings.