Preferred Language
Articles
/
PxfH4Y0BVTCNdQwCTSjc
St-Closed and Semi-extending Modules
...Show More Authors

Let R be a commutative ring with identity 1 ¹ 0, and let M be a unitary left module over R. A submodule N of an R-module M is called essential, if whenever N ⋂ L = (0), then L = (0) for every submodule L of M. In this case, we write N ≤e M. An R-module M is called extending, if every submodule of M is an essential in a direct summand of M. A submodule N of an R-module M is called semi-essential (denoted by N ≤sem M), if N ∩ P ≠ (0) for each nonzero prime submodule P of M. The main purpose of this work is to determine and study two new concepts (up to our knowledge) which are St-closed submodules and semi-extending modules. St-closed submodules is contained properly in the class of closed submodules, where a submodule N of M is called St-closed in M, if N has no proper semi-essential extension in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K, then N = K. We investigate the main properties of this type of submodules, and discuss some results that are useful in our work. The class of semi-extending modules is a generalization to the notion of extending modules, where an R-module M is called semi-extending, if every submodule of M is a semi-essential in a direct summand of M. Various properties of semi-extending modules are obtained, and we study the relationships between this class of modules and other related concepts.

Publication Date
Wed Jan 01 2020
Journal Name
Italian Journal Of Pure And Applied Mathematics
Duality of St-closed submodules and semi-extending modules
...Show More Authors

The main goal of this paper is to dualize the two concepts St-closed submodule and semi-extending module which were given by Ahmed and Abbas in 2015. These dualizations are called CSt-closed submodule and cosemi-extending mod- ule. Many important properties of these dualizations are investigated, as well as some others useful results which mentioned by those authors are dualized. Furthermore, the relationships of cosemi-extending and other related modules are considered.

View Publication Preview PDF
Scopus (2)
Scopus
Publication Date
Sun Oct 20 2024
Journal Name
Baghdad Science Journal
Modules Whose St-Closed Submodules are Fully Invariant
...Show More Authors

The duo module plays an important role in the module theory. Many researchers generalized this concept such as Ozcan AC, Hadi IMA and Ahmed MA. It is known that in a duo module, every submodule is fully invariant. This paper used the class of St-closed submodules to work out a module with the feature that all St-closed submodules are fully invariant. Such a module is called an Stc-duo module. This class of modules contains the duo module properly as well as the CL-duo module which was introduced by Ahmed MA. The behaviour of this new kind of module was considered and studied in detail,for instance, the hereditary property of the St-duo module was investigated, as the result; under certain conditions, every St-cl

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2015
Journal Name
Journal Of Al-nahrain University-science
St-closed Submodule
...Show More Authors

Abstract Throughout this paper R represents commutative ring with identity and M is a unitary left R-module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-closed submodules. It is stronger than the concept of closed submodules, where a submodule N of an R-module M is called St-closed (briefly N ≤Stc M) in M, if it has no proper semi-essential extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K then N = K. An ideal I of R is called St-closed if I is an St-closed R-submodule. Various properties of St-closed submodules are considered.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Oct 03 2015
Journal Name
International Journal Of Advanced Scientific And Technical Research
Semi-Extending
...Show More Authors

Throughout this paper R represents commutative ring with identity, and M is a unitary left R-module. The purpose of this paper is to study a new concept, (up to our knowledge), named a semi-extending modules, as generalization of extending modules, where an Rmodule M is called semi-extending if every sub module of M is a semi-essential in a direct summand of M. Various properties of semi-extending module are considered. Moreover, we investigate the relationships between semi-extending modules and other related concepts, such as CLS-modules and FI- extending modules.

Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
International Journal Of Algebra
Fully extending modules
...Show More Authors

Throughout this paper we introduce the concept of quasi closed submodules which is weaker than the concept of closed submodules. By using this concept we define the class of fully extending modules, where an R-module M is called fully extending if every quasi closed submodule of M is a direct summand.This class of modules is stronger than the class of extending modules. Many results about this concept are given, also many relationships with other related concepts are introduced.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
Ejectivity and goldie-extending modules
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Al- Mustansiriya J. Sci
Rationally Extending Modules and Strongly Quasi-Monoform Modules
...Show More Authors

An R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules

View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
On Annihilator-Extending Modules
...Show More Authors

    Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as  we discuss the relation between this concept and some other related concepts.

Scopus (1)
Scopus Crossref
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
St-Polyform Modules and Related Concepts
...Show More Authors

In this paper, we introduce a new concept named St-polyform modules, and show that the class of St-polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-Dedekind and ?-nonsingular modules. Various properties of such modules are obtained. Another characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of modules is considered. The relationships of St-polyform with some related concepts are investigated. Furthermore, we introduce other new classes which are; St-semisimple and ?-non St-singular modules, and we verify that the class of St-polyform modules lies between them.

View Publication Preview PDF
Scopus (8)
Scopus Clarivate Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semi-Small Compressible Modules and Semi-Small Retractable Modules
...Show More Authors

Let  be a commutative ring with 1 and  be left unitary  . In this paper we introduced and studied concept of semi-small compressible module (a     is said to be semi-small compressible module if  can be embedded in every nonzero semi-small submodule of . Equivalently,  is  semi-small compressible module if there exists a monomorphism  , ,     is said to be semi-small retractable module if  , for every non-zero  semi-small sub module in . Equivalently,  is semi-small retractable if there exists a homomorphism  whenever  .     In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible  and retractable  respectively and give some of their adv

... Show More
Crossref