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Abstract. The main goal of this paper is to dualize the two concepts St-closed
submodule and semi-extending module which were given by Ahmed and Abbas in
2015. These dualizations are called C'St-closed submodule and cosemi-extending mod-
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Keywords: CSt-closed submodules, St-closed submodules, Cosemi-essential submod-
ules, semi-essential submodules, Cosemi-extending modules, semi-extending modules.

1. Introduction

Throughout this article, R denotes a commutative ring with identity and all
modules are unitary left R-module. ”A submodule V of an R-module U is
called essential if every non-zero submodule of an R-module U has a non-zero
intersection with V” ([10], P.15). ”A submodule V of U is called closed if V
has no proper essential extensions inside U”([10], P.18). ”A submodule V of U
is called semi-essential if every non-zero prime submodule of U has a non-zero
intersection with V” ([6]). The concept of St-closed submodules is strongly than
closed submodules, where ” a submodule V of U is said to be St-closed, if V
has no proper semi-essential extensions inside U” ([8]). ”A submodule V of U
is called small in U (denoted by V <« U), if for every proper submodule K of
U,V + K # U” ([10], P.20). ”A submodule W is called coessential of V in U
(denoted by by W <. V in U) if whenever V/W < U/W then V = W" ([14]),
and "V is called coclosed in U (simply V' <. U) if A has no proper coessential
submodule in U” ([14]). Hadi and Ibrahiem introduced P-small submodules as
an extension to the concept of small submodules, where ”a proper submodule
V of an R-module U is called P-small (simply V <p U) if V+ P # U for every
prime submodule P of U” ([13]). ”"Let U be an R-module and W <V < U,
if % <p % then W is called a cosemi-essential submodule of V in U” ([5]).
” An R-module U is called extending if every closed submodule of U is a direct
summand of U” ([16], P.118). Ahmed and Abbas introduced the concepts ”semi-



DUALITY OF St-CLOSED SUBMODULES AND SEMI-EXTENDING MODULES 699

extending module” as a generalization of extending modules, where ”a module U
is called semi-extending if every St-closed submodule of U is a direct summand
of U” ([7)).

In this paper, CSt-closed submodule and cosemi-extending modules are de-
fined as dualizations of the classes of St-closed submodules and semi-extending
module respectively. This paper consists of four sections, in section 2; we intro-
duce the concept of C'St-closed submodule as a dualization of St-closed submod-
ule, so we present the properties of this concept, some of them are dualizations of
the results which appeared in [7, 8]. Beside, we add other useful results. Among
them are the following: Let U = Uy @ Uy R-module, where U; and Us be R-
modules and V be CSt-closed in Uy, then V is C'St-closed in U, see Proposition
2.9. Also; Let U be a finitely generated faithful and multiplication R-module,
and V be a submodule of U, then V <gg; U if and only if [V : U] <cs: R, see
Proposition 2.13. Furthermore, we introduce the concept of Pr-supplemented
and prove in Proposition 2.22 the following: Let U be a Noetherian (or multi-
plication) module, and V' < U. Consider the following statements:

1. Vis a Pr-supplement submodule of U.
2. V is C'St-closed submodule of U.

3. Condition*: ”For each submodule X of V; if X< pV then X< pU”. Then
(1) = (2) = (3), and if U is weakly Pr-supplemented then (3) = (1).

Section 3 is devoted to dualize the concept of semi-extending module, we call
it cosemi-extending modules, we give conditional characterization for cosemi-
extending module, see Theorem 3.4. In addition, we show in Proposition 3.9,
that every free multiplication R -module is cosemi-extending if and only if every
projective R-module cosemi-extending. Moreover, we discuss the direct sum of
cosemi-extending modules for example we prove that if U = X @ Y is a duo
module with anngX + annrY = R, where X and Y be R-modules, then X and
Y are cosemi-extending module if and only if U is cosemi-extending module, see
Theorem 3.10.

Section 4; discuss the relationships between cosemi-extending and some other
related concepts such as cosemi-uniform, Pr-hollow, semisimple and Pr-lifting
modules, see Propositions 4.2, 4.3, and Theorem 4.8. Moreover, we discuss in
4.9 and 4.10 the relationships of a cosemi-extending module with certain kind
of rings.

2. CSt-closed submodules

In this section we introduce the following concept which is a dualization of
St-closed submodules.

Definition 2.1. A submodule V of U is said to be CSt-closed (simply V <cst
U), if V has no proper cosemi-essential extensions inside U. That is if V/A <p
U/A, then V = A for all submodules A of U contained in V.
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Remarks and examples 2.2.

i.

ii.

iii.

1v.

vi.

vii.

viil.

Every R-module is C'St-closed submodule of itself.

(0) may not be C'St-closed submodule of a non-zero module, for example:
consider the Z-module Zy, (0) £cst Zs since (0) <cosm (2) < Zy ([5],
Ex.(2.3)(1)).

Consider the Z-module of rational number Q, since Z is P-small submodule
of Q, then Z/A <p Q/A, for every submodule A with A < Z < @ ([13)).

Thus Z £cost Q.

Every CSt-closed submodule is coclosed. To show that; let V <gg U,
then V has no proper cosemi-essential submodule in U, and by the direct
implication between coessential and cosemi-essential submodules in [5]; V
has no proper coessential submodule inside U, that is V is coclosed in U.

. Consider the Zpe as Z-module. The only proper C'St-closed submodule in

Zpoo is zero. In fact, Zp~ is an almost finitely generated module, where
7an R-module U is called almost finitely generated if U is not finitely
generated and every proper submodule of U is finitely generated” ([13]).
Note that in an almost finitely generated module; every P-small is small
([13]), so if V is a submodule of Zpe with V' <¢g¢ Zpe, then clearly V is
coclosed submodule of Zp. But, the only coclosed submodule in Zpe is
zero, therefore V = 0.

For the Z-module Zg; (2) <cs: Zg, since (2) has only two submodules
(0) and (2), and clearly (0) <cosm (2) in Zg. In fact, there is a prime
submodule (3) in Zg such that that (2)/(0) + (3)/(0) = Zs/(0). Thus the
only submodule contained (2) such that (2)/W <p Zg/W is (2) itself,

hence (2) <¢gst Zg. Note that, every submodule of Zg is C'St-closed.

For the Z-module Z;, since the only submodule W contained in (3) such
that (3)/W <p Z12/W is (3) itself, thus (3) <cst Z12.

If W is cosemi-essential submodule of V in U, and V is C'St-closed in U,
then V =U.

Proof. Since W is cosemi-essential submodule of V in U then V/W <p U/W,
but V is C'St-closed, therefore V = W. O

Remark 2.3. A direct summand of an R-module U may not be CSt-closed
submodule, for example (0) is a direct summand of Zy, but (0) £cst Z4 as was
showed in Example 2.2(ii). O

”An R-module U is called multiplication, if every submodule V of U can be
written in the form V = IU for some ideal I of R” ([9]).
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Proposition 2.4. If a module U is multiplication (finitely generated) then every
non-zero direct summand of U is C'St-closed.

Proof. Let U = V & W where both of V and W be submodules of U, with
V # (0). We have to show that V' <cg; U. Assume that X is a submodule of
V with V/X <p U/X. Now, U/X =V/X + (W + X)/X. On the other hand,
U is multiplication module (finitely generated), therefore V/X <« U/X ([13]).
This implies that U/X = (W + X)/X. To complete the proof, we must show
that V. =X. Letac V,thena+ X e U/X = (V+X)/X. Soa+X =b+X
for some b € W. This implies that a — b € X, hence a — b = ¢ for some ¢ € X.
Therefore, a —c=be W NV =0, thus a = ¢, hence a € X. So V = X, that is
V <cst U. U

Corollary 2.5. If U is a multiplication (finitely generated) module, then the
concept of CSt-closed submodules coincide with the coclosed submodules.

Proof. The proof follows by the equivalence between ”small” and ”P-small”

submodules in the class of multiplication (finitely generated) modules ([13]
Prop.(1.4)). O

Proposition 2.6. Let U be an R-module, and X, Y be submodules of U such
that X <Y < U, then If X is CSt-closed submodule in U, then X is CSt-closed
submodule in Y.

Proof. Suppose that V is a submodule of U with X <.,sm V < Y. So that
X <cosm V < U. Since X is C'St-closed submodule of U, then X = V. O

Corollary 2.7. For any submodules X and Y of an R-module U, the following
are hold:

1. If XNY <cst U, then X NY <cst X and X NY <¢gst Y.

2. If X <cst U and Y <cst U, then X <cst X +Y (alsoY <cst X +Y ).
The proof of (1) and (2) follows directly by Proposition 2.6.

3. If Vis a CSt-closed submodule of U, and W is a submodule of U such that
V 2 W, then it is not necessary that W is C'St-closed in U. For example,
the Z-module Z is CSt-closed in itself, and Z = 27, but 27 is not CSt-
closed submodule in Z, since 47 is a cosemi-essential submodule of 27 in

Z.

Remark 2.8. A submodule of CSt-closed need not be St-closed. That is if
Y is CSt-closed submodule of U and X < Y, then X may not be CSt-closed
submodule of U (or Y). In fact for the Z-module Z, if U =Y = Z and X =47,
then Z <ggt Z but 4Z <cgst Z, since 2Z/47 <p Z/AZ.

Proposition 2.9. Let U = Uy @ Us, where Uy and Uy be R-modules and V be
CSt-closed in Uy, then V is C'St-closed in U.
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Proof. Suppose that V is not CSt-closed in U, so there exists a proper sub-
module L of V such that V/L <p U/L. Let f: U/L — U;/L be a projection
epimorphism defined by f(u1 + ug + L) = uy + L where uy; € Uy and ug € Us.
Since V/L <p U/L, then f(V/L)=V/L <p U;/L ([13], Prop.(1.3)). But V is
CSt-closed in Uy, therefore V = L which is a contradiction, since L is a proper
submodule of V. Thus, V is CSt-closed of U. O

Proposition 2.10. Every submodule of semisimple module is C'St-closed.

Proof. Since a semisimple module has no cosemi-essential ([5], Rem.(2.3)(9)),
then we are done. O

”Recall that an R-module U is called Pr-hollow if each prime submodule of
U is small” ([3]).

Remark 2.11. The only proper C'St-closed submodule of Pr-hollow module is
a zero submodule.

Proof. Let U be a Pr-hollow module, and V be a proper C'St-closed in U. Since
U is Pr-hollow, then V < p U, hence V/(0) <p Q/(0). But V is C'St-closed,
thus V' = (0). O

We need to give the following Lemmas.

Lemma 2.12. Let U be a finitely generated faithful and multiplication R-module,
and let V be a submodule of U. Then V <p U if and only if [V : U] <p R.

Proof. Assume that V <p U, and I be an ideal of R with I + [I : U] = R,
then (I + [V : U))U = IU+ [V : UU = IU +V = U. Since U is finitely
generated, then V < p U implies to V <« U ([13]), so we deduce that IU =
U = RU. Since U is finitely generated multiplication and faithful, then I = R
([9]), hence [V : U] <p R. Conversely, Suppose that [V : U] <p R. Let
W be a submodule of U with V + W = U. Since U is multiplication, then
[V:UJU+[W :UJU =U, hence ([V : U+ [W : U])U = RU. Since U is finitely
generated and multiplication, so [V : U]+ [W : U] = R ([9]). On the other hand,
since [V : U] <p R, and R is finitely generated R-module, then [V : U] < R
([13]). Thus [W : U] = R. Now, W = [W : UJU = RU = U, implies to V < U.
But U is a finitely generated module thus V <p U ([13], Prop.(1.4). O

Lemma 2.13. Let U be a finitely generated and multiplication R-module, and
W <V <U, thenV/W <p U/W if and only if [V/W : U/W| <p R/([W : U)),
where [V/W : U/W considered as an ideal of R/([W : U]).

Proof. We can easily show that U/W is finitely generated faithful and multi-
plication R/[W : U] module. So U/W satisfies the conditions of Lemma 2.11,
hence the result follows. O

Proposition 2.14. Let U be a finitely generated faithful and multiplication R-
module, and let V be a submodule of U. Then V <cg U if and only if [V :
U] <c¢st R.
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Proof. Assume that V <g; U, and let I[V : UJR with ([V : U])/I <p R/I.
Since [[U : UJU = I, then ([V : U))/([IU : U]) <p R/([IU : U]). We can easily
show that:
(v:u])/(LU - U) = [V :UJU)/(IU - UU) : U/([IU : UJU)].
Thus:
[([V:UJO)/([IU :UJU) : U/([IU : UJU)| <p R/([IU : U)).

Hence:

V=[V:UU=[IU:UJU =1U.
But V <gs; U, therefore [V : U] = I. Conversely, let W be a submodule of V
such that V/W <p U/W . By Lemma 2.12:

V/W :U/W] <p R/([W :U]).
It is clear that:

[V/W U/W]=([V:U])/(W:U]).

This implies that:

(V:UD/(W - U)) <p R/([W : UJ).
Since [V : U] <p R, then [V : U] = [W : U]. Thus V =W, that is V <¢g; U.OJ

Now, we can give the following result.

Proposition 2.15. If V is CSt-closed submodule of an R-module U, then V/L
is C'St-closed in U/L for any submodule L of V.

Proof. Let L be a submodule of U, and W be a submodule of V containing L
such that % <p % So that V/W <p U/W. Since V is CSt-closed of U,
then V.= W, hence V/L = W/L, and we are done.

It is known that if X <V < U with X «<p U then X may not be P-small
submodule of V ([13]), so we have the following.

Proposition 2.16. Let V be a CSt-closed submodule of an R-module U. For
each submodule X of V with X <V <U ;if X <p U then X <p V.

Proof. Let X be a submodule of V with X «<p U. Suppose that V =X +Y
for some prime submodule Y of V. We claim that V/Y <p U/Y. To prove
this; assume that V/Y + W/Y = U/Y where W/Y is a prime submodule of
U/Y. This implies that W is prime submodule of U ([15]). On the other hand,
V4+W =U,hence U =X+Y+W=X+W. SoU = X + W which is a
contradiction since X <p U, thus U # X+ W, hence U/Y # X/Y +W/Y, thus
VY <p U/Y. Now, wehave V <¢gg; U and V/Y «<p U/Y, then V =Y, which
is a contradiction since Y is proper, therefore V # X + Y that is X <p V. O

From Proposition 2.16, we conclude the following.
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Corollary 2.17. Let X and V be submodules of an R-module U such that X <
VILU. If X <¢gst V and V <cgt U then X <¢gg¢ U.

Proof. Let W < X with X/W <p U/W. Since V <¢g; U, then by Proposition
2.14, V/W <cgy U/W, and by Proposition 2.15, X/W <p V/W. But X <¢g;
V', therefore X = W, that is X <gg: U. ]

"Recall that a submodule V of an R-module is called supplement (weakly
supplement) of W in U, if V is minimal with the property U = W+V equialently,
U=W+Vand WNV <V (resp. WNV < U)” ([14]). ”A submodule V of U
is called a supplement submodule of U if V is a supplement of some submodule
of U, and an R-module U is called supplemented (weakly supplemented) if every
submodule of U has a supplement (resp. weakly supplement) in U” ([14]). Now
we need to give generalizations for these classes.

Definition 2.18. A submodule V of an R-module U is said to be Pr-supplement
(weakly Pr-supplement) of Win U if U =W +V and WNV <p V (resp.
WnNV «<pU). A submodule V of U is said to be Pr-supplement (weakly Pr-
supplement) submodule of U if V is a Pr-supplement (weakly Pr-supplement)
of some submodule of U. An R-module U is called Pr-supplemented (weakly
Pr-supplemented) if every submodule of U has a Pr-supplement (weakly Pr-
supplement) in U.

It is clear that every supplement is Pr-supplement submodule.
Examples 2.19.

i. Z, is a Pr-supplemented module, since every submodule of Z, has a Pr-
supplement.

ii. Zpx is Pr-supplemented, since Zpo an Pr-supplement of every proper
submodule of the Z-module Zpe.

iii. Z is not Pr-supplemented, since 27 has no Pr-supplement submodule in
Z.

”An R-module U is called Noetherian if every submodule of U is finitely
generated” ([10], P.7).

Proposition 2.20. If U be a Noetherian module, then every Pr-supplement
submodule of U is CSt-closed submodule of U.

Proof. Let V be a Pr-supplement of a submodule L in U, then U = V + L and
VNL <p V. Let W <V < U such that V/W <p U/W. Since U is Noetherian,
then V/W < U/W ([13], Prop.(1.7)), We can write U/W as follows:

U/W = (V + L)W = V/W + (L + W)/W.

This implies that:
UW =(L+W)/W
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hence U = L + W, and by minimality of V, we conclude that W = V| that is
V <cs: U. O

Remark 2.21. If we replace the condition ” Noetherian” in Proposition 2.20 by
”finitely generated” or "multiplication”, then we deduce the same result, since
Hadi and Ibrahiem in ([13], Prop.(1.4)) showed that under these conditions the
concepts small and P-small submodules are equivalent.

From Propositions 2.16 and 2.20, we have the following

Theorem 2.22. Let U be a Noetherian (or multiplication) module, and V < U.
Consider the following statements:

1. Vis a Pr-supplement submodule of U.

2. Vis CSt-closed submodule of U.

3. Condition*: "For each submodule X of V; if X <p U then X <p V7.
Then (1) = (2) = (3), and if U is weakly Pr-supplemented then (3) = (1).

Proof. (1) = (2) It is just Proposition 2.20.

(2) = (3) Proposition 2.16.

(3) = (1) Suppose the condition*, since U is weakly Pr-supplemented mod-
ule, then there exists a submodule L of U such that U = V+Land VNL <p U.
But VN L CV, so by assumption VN L <p V, hence V is Pr-supplement of
U. O

We need the following lemma.

Lemma 2.23 ([5], Prop. (2.4)). "For a chained of submodules A< B <C <U
of an R-module U; if A <cosm B in U and B <. C in U then A <.osm B in
U”.

Proposition 2.24. Let U be a multiplication (finitely generated) module. For
a chain of a submodules A < B < C < U, if A <cosm B in U and B <cosm C
in U, then A <cosm C in U.

Proof. The expression B < s, C in U, means C'/B <p U/B. Since U is
multiplication (finitely generated) then C'/B <« U/B ([13], Prop. (1.4)), hence
B <. C in U. Now, we have A <;psm, B in U and B <. C in U, by Lemma
2.23 we get A < psm C in U. O

Proposition 2.25. Let U be a multiplication (finitely generated) R-module, then
for every non-zero submodule V of U, there exists a CSt-closed submodule K of
U with V <cosm K in U.
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Proof. Consider the set: F' = {A|A is a submodule of U such that V' <,osm A}
Note that F # &, so by Zorns Lemma, F has a maximal element say K. In
order to prove that K is an CSt-closed submodule in U; assume that there
exists a submodule X of U such that K <gp5m X < U. Since V < psm K and
K <cosm X, and U is multiplication so by Proposition 2.24, V' < psm X. But
this contradicts the maximality of K, thus K = X. Therefore K <¢cg: U with
V <cosm K in U. O

Proposition 2.26. Let U = X @Y where X and Y be two R-modules and
annpX + annrY = R. Assume that C = A® B where A< X and B<Y. If
C <cst U then A <gsi U and B <cg: Y.

Proof. Suppose that (A/S) <p (X/S) and (B/W) <p (Y/W), where S < A
and W < B. Since anngX + anngY = R, then by [13]:

(A/S) @ (B/W) <p (X/W) @ (Y/W).

Hence:
(AeB)/(SeW))<p(XaY)/(SeW)

and so that:
(C/SeW)<p (U/SeW).

But C <¢gs; U, therefore C' = S & W. This implies that (A& B) = (S& W),
but S < A and W < B, therefore A = S and B = W. Thus A <gg; X and
B <cstY. O

Proposition 2.27. Let U be a multiplication module with U = X &Y where
X and Y be two R-modules and anngX + annrY = R. Then a submodule
C <cst U if and only if there exist C'St-closed submodules A, B of X and Y
respectively such that C = A ® B.

Proof. Assume that C' <gg; U. since anngX + annrY = R, then by ([1],
Prop.(4.2)) there exist submodules A, B of X and Y respectively such that
C = A® B. By Proposition 2.26 both of A and B are C'St-closed submodules
X and Y respectively. Conversely, in order to prove that C <gg: U; suppose
that C/W <p U/W, where W < C < U. Since anngX + anngpY = R, so by
the same proof of ([1], Prop(4.2)), there exist W; < X and Wy <Y such that
W = Wi @ Ws. Now,

C/W=(AeB)/(W1+Ws) <p (XBY)/(W) + W>)

implies to:
A/W1 D B/WQ <p X/W1 @Y/WQ.

But U is multiplication, thus by [13]:

A/W1 & B/Wy < X/W1 @Y/Ws.
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Hence:
AW < X/Wq

and B/Wy < Y /Wy ([10], P.20) Again, U is multiplication, so that:
A/W <p X/Wy

and
B/Wy <p Y/Ws.

Since A and B are C'St-closed submodules of X and Y respectively, thus A = Wy
and B = Wy, and hence C = A®B, thus C = W1 ®&Wsy = W, hence C <¢g: U.O

3. Cosemi-extending module

In this section, we dualize the concept of semi-extending modules which is ap-
peared in [7]. We start by the following definition.

Definition 3.1. An R-module U is called cosemi-extending if every CSt-closed
submodule of U is direct summand.

Remarks and examples 3.2.

i. It is clear that every coextending module is cosemi-extending, where ”an
R-module U is called coextending (or C'C'S-module), if every coclosed
submodule of U is a direct summand of U” ([12]). This is follows from the
direct implication between CSt-closed and coclosed submodules.

ii. Z is cosemi-extending Z-module. In fact, the only C'St-closed submodule
of Z is (0) which is a direct summand of Z.

iii. Hollow modules is cosemi-extending, since it is coextending ([12]). In
particular Zp~ is cosemi-extending module.

iv. Zo ® Zy4 is a cosemi-extending Z-module, since it is coextending ([12]).
v. Every simple module is cosemi-uniform.

Proposition 3.3. Let U be an R-module, if every submodule of U is cosemi-
essential in a direct summand of U, then U is a cosemi-extending module.

Proof. Suppose that V is a C'St-closed submodule of U. By hypothesis, V' <.osm
K in U, where K is a direct summand of U. But V is CSt-closed in U, thus
V = K, that is V is a direct summand of U. O

By using Proposition 2.25, the following gives a partial characterization of
cosemi-extending module.

Theorem 3.4. A multiplication (finitely generated) module U is cosemi-exten-

ding if and only if every submodule is cosemi-essential in a direct summand of
U.
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Proof. Assume that U is a cosemi-extending module, and let V be a submodule
of U. In case V' = (0), then clearly V is a cosemi-essential submodule in a direct
summand of U. Otherwise; since U is multiplication (finitely generated) so by
Proposition 2.25, there exists an St-closed submodule K in U such that V' < osm
K in U. By hypotheses, K is a direct summand of U, therefore V <.psn, K in
U. The converse is just Proposition 3.3. g

Proposition 3.5. Let U be a multiplication (finitely generated) and cosemi-
extending module. For every submodules X and Y of U. If X NY <cg: U, then
X NY is a direct summand of X and Y.

Proof. We have to show that X NY is a direct summand of X. Since U
is a multiplication (finitely generated) and cosemi-extending module, then by
Theorem 3.4, X NY is cosemi-essential in a direct summand of U. But X NY <
X < U, so clearly X NY is a direct summand of X. O

Proposition 3.6. A direct summand of multiplication cosemi-extending module
18 a cosemi-extending module.

Proof. Let U be an R-module, and V be a direct summand of U. Assume that
K is a C'St-closed submodule of V. Since U is multiplication and V is a direct
summand of U, then by Proposition 2.4, V is a C'St-closed submodule of U, and
by Corollary 2.16, K is a CSt-closed submodule of U. But U is cosemi-extending,
then U = L ® K for some submodule L of U. Now, V=UNV = (K®L)NV =
K & (LNV) by Modular Law. Thus K is a direct summand of V, that is, i.e V
is a cosemi-extending module. 0

As a consequence of Proposition 3.6 we have the following. Before that, an
R-module U is said to be projective if every short exact sequence of the form:

(0) > W—=V—=U — (0)
splits ([16], P.23).

Corollary 3.7. Let f : Uy — Us be an epimorphism from an R-module Uy to a
projective R-module Us. If Uy is a multiplication and cosemi-extending module,
then Uy is cosemi- extending.

Proof. Consider the following short exact sequence:
(0) = kerf = U L Uy — (0),

where ¢ is the inclusion homomorphism. Since Us is a projective, then the
sequence splits. This implies that Uy = kerf & Us, so U, is isomorphic to a
direct summand of U;. Since U; is multiplication and cosemi-extending, so by
proposition 3.6, Us is cosemi-extending. ]

Corollary 3.8. Let U be a multiplication and cosemi-extending R-module, and
Vis a CSt-closed submodule of U, then U/V is cosemi-extending.
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Proof. Since V is a CSt-closed submodule of U, and U is cosemi-extending,
then V is a direct summand of U, so U = V & L for some submodule W of U.
This implies that U/V = L. But L is a direct summand of U, so by Proposition
3.6, U/V is cosemi-extending. O

Recall that an R-module U is called free if it has a basis ([16], P.21).

Proposition 3.9. Let U be a multiplication R-module, then every free R-module
is cosemi-extending if and only if every projective R-module is cosemi-extending.

Proof. For the necessity; let U be a projective R-module, then U is an epi-
morphic image of a free R-module say F ([16], P.23). By the hypothesis, F is a
cosemi-extending module. But U is multiplication, then by Corollary 3.7, U is
cosemi-extending. The converse is straightforward. O

"Recall that an R-module U is called duo, if every submodule of U is a
fully invariant” ([2]). The following theorem deals with the direct sum of two
cosemi-extending modules.

Theorem 3.10. Let U = X®Y be a duo module, where X and Y are R-modules.
Assume that anngX 4+ annrY = R. If X and Y are cosemi-extending module
then U is cosemi-extending. the converse is true when U is multiplication

Proof. Assume that X and Y are cosemi-extending, and let V' <¢gg; U. Since
U is a duo module, then V is fully invariant, hence V.= (VN X)® (VNY) ([2]).
By Proposition 2.8(1), VN X <cgt X and VNY <cg: Y respectively. But X
and Y are cosemi-extending, so VN X @ S=Xand VNY &7 =Y for some
S < X and T <Y. This implies that:

XeY=(VnXaeS)ae(VnYaeTl),

U=[(VnX)e(VnY))a(SaT).

Ifweput W =5&T, then U =V @& W, thus V is a direct summand of U,
hence U is cosemi-extending. For the converse; since U is multiplication, then
the result follows by Proposition 3.6. O

Since every multiplication module is duo, then form Theorem 3.10 we deduce
the following.

Corollary 3.11. Let U be a multiplication module such that U = X &Y, where
X and Y be R-modules. If annpX +annpY = R, then U is a cosemi-extending
module if and only if X and Y are cosemi-extending.

4. Cosemi-extending module related concepts

This section deals with the relationships between cosemi-extending module and
other related concepts such as semisimple, Pr-hollow module, cosemi-uniform,
Pr-lifting and St-semisimple modules.
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Remark 4.1. Every semisimple module is cosemi-extending. This follows by
every submodule of semisimple module is C'St-closed. The converse is not true in
general, for example: Zpo is cosemi-extending Z-module, but it is not semisim-
ple.

”An R-module U is said to be Pr-hollow if every prime submodule of U is
small submodule” ([3]).

Proposition 4.2. Fvery Pr-hollow module is cosemi-extending module.

Proof. Assume that U is a Pr-hollow module. By Remark 2.10; the only CSt-
closed submodule of Pr-hollow module is zero, hence the result follows. ]

The converse of Proposition 4.2 is not true in general, for example; Z is a
cosemi-extending Z-module, but not Pr-hollow module ([3], (1.2)(2)).

”Recall that a non-zero R-module U is called cosemi-uniform, if every proper
submodule V of U is either zero or there exists a proper submodule S of V such
that V/S <p U/S 7 ([5]).

Proposition 4.3. Fvery cosemi-uniform module is cosemi-extending module.

Proof. Let U be a cosemi-extending module, and V be a submodule of U. If
V = (0) then either V is C'St-closed or not, in each case V is a direct summand
of U. If V # (0), since U is a cosemi-uniform module so there exists a proper W
of V such that V/W < p U/W, therefore, V is not C'St-closed in U. So U has a

non-zero C'St-closed submodule, thus U is cosemi-extending.

The converse of Proposition 4.3 is not true in general, for example the Z-
module Zy( is a cosemi-extending module because it is a semisimple module,
but not a cosemi-uniform module, see ([5], Rem (3.2)(3)).

” A non-zero module U is called couniform, if every proper submodule V of U
is either zero or there exists a proper submodule W of V such that V/W < U/W.
That is for each proper submodule V of U, either N = (0) or there exists a proper
submodule W of V such that W <. VinU” ([11]).

Since every couniform module is cosemi-uniform, then we have the following.
Corollary 4.4. Every couniform module is cosemi-extending.

The converse of Corollary 4.4 is not true in general. In fact the Z-module
Zg s not couniform module ([11], Rem.(1.2)(2)), while Zg is cosemi-extending
because it is semisimple.

”"Recall that a module U is called lifting, if for every submodule V of U
there exists a direct summand W of U such that W <. V in U” ([14]). This
motivated us to define the following.
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Definition 4.5. An R-module U is called Pr-lifting, if for every submodule V
of U there exists a direct summand W of U such that W < osm V in U.

This concept is clearly a proper subclass of lifting module, and we can prove
the following.

Proposition 4.6. If a module U is a Pr-lifting module, then U is cosemi-
extending.

Proof. Let V be a C'St-closed submodule of U. Since U is a Pr-lifting module,
so there exists a direct summand W of U, such that W <.,sn V in U, that is
V/W <p U/W. But V <¢ggy U, then V = W. That is U is a cosemi-extending
module. O

The converse of Proposition 4.6 is not true in general, for example: Z as
Z-module is a cosemi-extending module, but it is not Pr-lifting.

” An R-module U is called St-semisimple if every submodule of U is St-closed”
([4]). As a dual of this concept, we introduce the following.

Definition 4.7. An R-module U is called CSt-semisimple, if every submodule
of U is CSt-closed.

The following theorem gives some useful relationships of a cosemi-essential
module with some related concepts.

Theorem 4.8. If U is CSt-semisimple, then the following statements are equiv-
alent.

1. U is a Pr-lifting module.
2. U is a cosemi-extending module.
3. U is a semisimple module.

Proof. (1) = (2) It is just Proposition 4.6.
(2) = (3) Let V be a submodule of U, since U is CSt-semisimple, then
V <cst U. But U is cosemi-extending, therefore V is a direct summand of U.
(3) = (1) Let V be a submodule of U, by (3), V is a direct summand of
U. On the other hand, V' <iosm V in U ([5], Rem (2.3)(6)). So U satisfies the
definition of Pr-lifting, and we are done. g

Hadi and Ibrahiem in [13] defined P-Rad(U) as a summation of all P-small
submodules of U, so we have the following.

Theorem 4.9. Let R be a ring such that P — Rad(R/A) = 0, for each ideal A
of R. Then every R-module is a cosemi-extending module if and only if R is a
semisimple ring.
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Proof. Assume that every R-module is cosemi-extending, then R is a cosemi-
extending R-module. So if I is a CSt-closed ideal of R, then I is a direct
summand of R. Assume that I is not C'St-closed ideal in R, then there exists
a proper ideal A of I such that I/A <p R/A. This implies that I/A < P —
Rad(R/A) = 0, thus I/A = 0, hence A = I which a contradiction, therefore
I <¢st R. Since R is cosemi-extending R-module, then [ is a direct summand of
R.i.e R is a semisimple ring. Conversely; since R is a semisimple ring, then every
R-module U is semisimple, hence every submodule of U is direct summand. In
particular; every C'St-closed submodule of U is direct summand. O

If the condition ”semisimple ring” in Theorem 4.9 is replaced by ” St-semisimple”,
then we need to add another condition as the following theorem shows.

Theorem 4.10. Let R be a ring such that P — Rad(R/A) = 0, for each ideal
A of R. Then every finitely generated R-module is a cosemi-extending module if
and only if R is an St-semisimple ring.

Proof. =) It is as the same proof of Theorem 4.9.

<) Since R is finitely generated, then the concept of a C'St-closed submodule
coincide with coclosed submodule, see Corollary 2.5, and according that, there is
no difference between St-semisimple and semisimple modules, thus by Theorem
4.9, every R-module (hence every finitely generated) is cosemi-extending. O
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