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Abstract. The main goal of this paper is to dualize the two concepts St-closed
submodule and semi-extending module which were given by Ahmed and Abbas in
2015. These dualizations are called CSt-closed submodule and cosemi-extending mod-
ule. Many important properties of these dualizations are investigated, as well as some
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1. Introduction

Throughout this article, R denotes a commutative ring with identity and all
modules are unitary left R-module. ”A submodule V of an R-module U is
called essential if every non-zero submodule of an R-module U has a non-zero
intersection with V” ([10], P.15). ”A submodule V of U is called closed if V
has no proper essential extensions inside U”([10], P.18). ”A submodule V of U
is called semi-essential if every non-zero prime submodule of U has a non-zero
intersection with V” ([6]). The concept of St-closed submodules is strongly than
closed submodules, where ” a submodule V of U is said to be St-closed, if V
has no proper semi-essential extensions inside U” ([8]). ”A submodule V of U
is called small in U (denoted by V ≪ U), if for every proper submodule K of
U, V +K ̸= U” ([10], P.20). ”A submodule W is called coessential of V in U
(denoted by by W ≤ce V in U) if whenever V/W ≪ U/W then V = W” ([14]),
and ”V is called coclosed in U (simply V ≤cc U) if A has no proper coessential
submodule in U” ([14]). Hadi and Ibrahiem introduced P -small submodules as
an extension to the concept of small submodules, where ”a proper submodule
V of an R-module U is called P -small (simply V ≪P U) if V +P ̸= U for every
prime submodule P of U” ([13]). ”Let U be an R-module and W ≤ V ≤ U ,
if V

W ≪P
U
W then W is called a cosemi-essential submodule of V in U” ([5]).

”An R-module U is called extending if every closed submodule of U is a direct
summand of U” ([16], P.118). Ahmed and Abbas introduced the concepts ”semi-
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extending module” as a generalization of extending modules, where ”a module U
is called semi-extending if every St-closed submodule of U is a direct summand
of U” ([7]).

In this paper, CSt-closed submodule and cosemi-extending modules are de-
fined as dualizations of the classes of St-closed submodules and semi-extending
module respectively. This paper consists of four sections, in section 2; we intro-
duce the concept of CSt-closed submodule as a dualization of St-closed submod-
ule, so we present the properties of this concept, some of them are dualizations of
the results which appeared in [7, 8]. Beside, we add other useful results. Among
them are the following: Let U = U1 ⊕ U2 R-module, where U1 and U2 be R-
modules and V be CSt-closed in U1, then V is CSt-closed in U, see Proposition
2.9. Also; Let U be a finitely generated faithful and multiplication R-module,
and V be a submodule of U, then V ≤CSt U if and only if [V : U ] ≤CSt R, see
Proposition 2.13. Furthermore, we introduce the concept of Pr-supplemented
and prove in Proposition 2.22 the following: Let U be a Noetherian (or multi-
plication) module, and V ≤ U . Consider the following statements:

1. V is a Pr-supplement submodule of U.

2. V is CSt-closed submodule of U.

3. Condition∗: ”For each submodule X of V; if X≪PV then X≪PU”. Then
(1) ⇒ (2) ⇒ (3), and if U is weakly Pr-supplemented then (3) ⇒ (1).

Section 3 is devoted to dualize the concept of semi-extending module, we call
it cosemi-extending modules, we give conditional characterization for cosemi-
extending module, see Theorem 3.4. In addition, we show in Proposition 3.9,
that every free multiplication R -module is cosemi-extending if and only if every
projective R-module cosemi-extending. Moreover, we discuss the direct sum of
cosemi-extending modules for example we prove that if U = X ⊕ Y is a duo
module with annRX + annRY = R, where X and Y be R-modules, then X and
Y are cosemi-extending module if and only if U is cosemi-extending module, see
Theorem 3.10.

Section 4; discuss the relationships between cosemi-extending and some other
related concepts such as cosemi-uniform, Pr-hollow, semisimple and Pr-lifting
modules, see Propositions 4.2, 4.3, and Theorem 4.8. Moreover, we discuss in
4.9 and 4.10 the relationships of a cosemi-extending module with certain kind
of rings.

2. CSt-closed submodules

In this section we introduce the following concept which is a dualization of
St-closed submodules.

Definition 2.1. A submodule V of U is said to be CSt-closed (simply V ≤CSt

U), if V has no proper cosemi-essential extensions inside U. That is if V/A ≪P

U/A, then V = A for all submodules A of U contained in V.
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Remarks and examples 2.2.

i. Every R-module is CSt-closed submodule of itself.

ii. (0̄) may not be CSt-closed submodule of a non-zero module, for example:
consider the Z-module Z4, (0̄) �CSt Z4 since (0̄) ≤cosm (2̄) ≤ Z4 ([5],
Ex.(2.3)(1)).

iii. Consider the Z-module of rational number Q, since Z is P -small submodule
of Q, then Z/A ≪P Q/A, for every submodule A with A ≤ Z ≤ Q ([13]).
Thus Z �CSt Q.

iv. Every CSt-closed submodule is coclosed. To show that; let V ≤CSt U ,
then V has no proper cosemi-essential submodule in U, and by the direct
implication between coessential and cosemi-essential submodules in [5]; V
has no proper coessential submodule inside U, that is V is coclosed in U.

v. Consider the ZP∞ as Z-module. The only proper CSt-closed submodule in
ZP∞ is zero. In fact, ZP∞ is an almost finitely generated module, where
”an R-module U is called almost finitely generated if U is not finitely
generated and every proper submodule of U is finitely generated” ([13]).
Note that in an almost finitely generated module; every P -small is small
([13]), so if V is a submodule of ZP∞ with V ≤CSt ZP∞ , then clearly V is
coclosed submodule of ZP∞ . But, the only coclosed submodule in ZP∞ is
zero, therefore V = 0.

vi. For the Z-module Z6; (2̄) ≤CSt Z6, since (2̄) has only two submodules
(0̄) and (2̄), and clearly (0̄) ≤cosm (2̄) in Z6. In fact, there is a prime
submodule (3̄) in Z6 such that that (2̄)/(0̄) + (3̄)/(0̄) = Z6/(0̄). Thus the
only submodule contained (2̄) such that (2̄)/W ≤P Z6/W is (2̄) itself,
hence (2̄) ≤CSt Z6. Note that, every submodule of Z6 is CSt-closed.

vii. For the Z-module Z12, since the only submodule W contained in (3̄) such
that (3̄)/W ≪P Z12/W is (3̄) itself, thus (3̄) ≤CSt Z12.

viii. If W is cosemi-essential submodule of V in U, and V is CSt-closed in U,
then V = U .

Proof. Since W is cosemi-essential submodule of V in U then V/W ≪P U/W ,
but V is CSt-closed, therefore V = W . �

Remark 2.3. A direct summand of an R-module U may not be CSt-closed
submodule, for example (0̄) is a direct summand of Z4, but (0̄) �CSt Z4 as was
showed in Example 2.2(ii). �

”An R-module U is called multiplication, if every submodule V of U can be
written in the form V = IU for some ideal I of R” ([9]).
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Proposition 2.4. If a module U is multiplication (finitely generated) then every
non-zero direct summand of U is CSt-closed.

Proof. Let U = V ⊕ W where both of V and W be submodules of U, with
V ̸= (0). We have to show that V ≤CSt U . Assume that X is a submodule of
V with V/X ≪P U/X. Now, U/X = V/X + (W +X)/X. On the other hand,
U is multiplication module (finitely generated), therefore V/X ≪ U/X ([13]).
This implies that U/X = (W + X)/X. To complete the proof, we must show
that V = X. Let a ∈ V , then a+X ∈ U/X = (V +X)/X. So a+X = b+X
for some b ∈ W . This implies that a− b ∈ X, hence a− b = c for some c ∈ X.
Therefore, a− c = b ∈ W ∩ V = 0, thus a = c, hence a ∈ X. So V = X, that is
V ≤CSt U . �

Corollary 2.5. If U is a multiplication (finitely generated) module, then the
concept of CSt-closed submodules coincide with the coclosed submodules.

Proof. The proof follows by the equivalence between ”small” and ”P-small”
submodules in the class of multiplication (finitely generated) modules ([13]
Prop.(1.4)). �

Proposition 2.6. Let U be an R-module, and X, Y be submodules of U such
that X ≤ Y ≤ U , then If X is CSt-closed submodule in U, then X is CSt-closed
submodule in Y.

Proof. Suppose that V is a submodule of U with X ≤cosm V ≤ Y . So that
X ≤cosm V ≤ U . Since X is CSt-closed submodule of U, then X = V . �

Corollary 2.7. For any submodules X and Y of an R-module U, the following
are hold:

1. If X ∩ Y ≤CSt U , then X ∩ Y ≤CSt X and X ∩ Y ≤CSt Y .

2. If X ≤CSt U and Y ≤CSt U , then X ≤CSt X + Y (also Y ≤CSt X + Y ).
The proof of (1) and (2) follows directly by Proposition 2.6.

3. If V is a CSt-closed submodule of U, and W is a submodule of U such that
V ∼= W , then it is not necessary that W is CSt-closed in U. For example,
the Z-module Z is CSt-closed in itself, and Z ∼= 2Z, but 2Z is not CSt-
closed submodule in Z, since 4Z is a cosemi-essential submodule of 2Z in
Z.

Remark 2.8. A submodule of CSt-closed need not be St-closed. That is if
Y is CSt-closed submodule of U and X ≤ Y , then X may not be CSt-closed
submodule of U (or Y). In fact for the Z-module Z, if U = Y = Z and X = 4Z,
then Z ≤CSt Z but 4Z ≤CSt Z, since 2Z/4Z ≪P Z/4Z.

Proposition 2.9. Let U = U1 ⊕ U2, where U1 and U2 be R-modules and V be
CSt-closed in U1, then V is CSt-closed in U.
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Proof. Suppose that V is not CSt-closed in U, so there exists a proper sub-
module L of V such that V/L ≪P U/L. Let f : U/L → U1/L be a projection
epimorphism defined by f(u1 + u2 + L) = u1 + L where u1 ∈ U1 and u2 ∈ U2.
Since V/L ≪P U/L, then f(V/L) = V/L ≪P U1/L ([13], Prop.(1.3)). But V is
CSt-closed in U1, therefore V = L which is a contradiction, since L is a proper
submodule of V. Thus, V is CSt-closed of U. �

Proposition 2.10. Every submodule of semisimple module is CSt-closed.

Proof. Since a semisimple module has no cosemi-essential ([5], Rem.(2.3)(9)),
then we are done. �

”Recall that an R-module U is called Pr-hollow if each prime submodule of
U is small” ([3]).

Remark 2.11. The only proper CSt-closed submodule of Pr-hollow module is
a zero submodule.

Proof. Let U be a Pr-hollow module, and V be a proper CSt-closed in U. Since
U is Pr-hollow, then V ≪P U , hence V/(0) ≪P Q/(0). But V is CSt-closed,
thus V = (0). �

We need to give the following Lemmas.

Lemma 2.12. Let U be a finitely generated faithful and multiplication R-module,
and let V be a submodule of U. Then V ≪P U if and only if [V : U ] ≪P R.

Proof. Assume that V ≪P U , and I be an ideal of R with I + [I : U ] = R,
then (I + [V : U ])U = IU + [V : U ]U = IU + V = U . Since U is finitely
generated, then V ≪P U implies to V ≪ U ([13]), so we deduce that IU =
U = RU . Since U is finitely generated multiplication and faithful, then I = R
([9]), hence [V : U ] ≪P R. Conversely, Suppose that [V : U ] ≪P R. Let
W be a submodule of U with V + W = U . Since U is multiplication, then
[V : U ]U + [W : U ]U = U , hence ([V : U ] + [W : U ])U = RU . Since U is finitely
generated and multiplication, so [V : U ]+[W : U ] = R ([9]). On the other hand,
since [V : U ] ≪P R, and R is finitely generated R-module, then [V : U ] ≪ R
([13]). Thus [W : U ] = R. Now, W = [W : U ]U = RU = U , implies to V ≪ U .
But U is a finitely generated module thus V ≪P U ([13], Prop.(1.4). �

Lemma 2.13. Let U be a finitely generated and multiplication R-module, and
W ≤ V ≤ U , then V/W ≪P U/W if and only if [V/W : U/W ] ≪P R/([W : U ]),
where [V/W : U/W considered as an ideal of R/([W : U ]).

Proof. We can easily show that U/W is finitely generated faithful and multi-
plication R/[W : U ] module. So U/W satisfies the conditions of Lemma 2.11,
hence the result follows. �

Proposition 2.14. Let U be a finitely generated faithful and multiplication R-
module, and let V be a submodule of U. Then V ≤CSt U if and only if [V :
U ] ≤CSt R.
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Proof. Assume that V ≤St U , and let I[V : U ]R with ([V : U ])/I ≪P R/I.
Since [IU : U ]U = I, then ([V : U ])/([IU : U ]) ≪P R/([IU : U ]). We can easily
show that:

([V : U ])/([IU : U ]) = [([V : U ]U)/([IU : U ]U) : U/([IU : U ]U)].

Thus:

[([V : U ]U)/([IU : U ]U) : U/([IU : U ]U)] ≪P R/([IU : U ]).

Hence:
V = [V : U ]U = [IU : U ]U = IU.

But V ≤CSt U , therefore [V : U ] = I. Conversely, let W be a submodule of V
such that V/W ≪P U/W . By Lemma 2.12:

[V/W : U/W ] ≪P R/([W : U ]).

It is clear that:
[V/W : U/W ] = ([V : U ])/([W : U ]).

This implies that:

([V : U ])/([W : U ]) ≪P R/([W : U ]).

Since [V : U ] ≤P R, then [V : U ] = [W : U ]. Thus V = W , that is V ≤CSt U .�
Now, we can give the following result.

Proposition 2.15. If V is CSt-closed submodule of an R-module U, then V/L
is CSt-closed in U/L for any submodule L of V.

Proof. Let L be a submodule of U, and W be a submodule of V containing L
such that V/L

W/L ≪P
U/L
W/L . So that V/W ≪P U/W . Since V is CSt-closed of U,

then V = W , hence V/L = W/L, and we are done.

It is known that if X ≤ V ≤ U with X ≪P U then X may not be P -small
submodule of V ([13]), so we have the following.

Proposition 2.16. Let V be a CSt-closed submodule of an R-module U. For
each submodule X of V with X ≤ V ≤ U ; if X ≪P U then X ≪P V .

Proof. Let X be a submodule of V with X ≪P U . Suppose that V = X + Y
for some prime submodule Y of V. We claim that V/Y ≪P U/Y . To prove
this; assume that V/Y + W/Y = U/Y where W/Y is a prime submodule of
U/Y . This implies that W is prime submodule of U ([15]). On the other hand,
V + W = U , hence U = X + Y + W = X + W . So U = X + W which is a
contradiction since X ≪P U , thus U ̸= X+W , hence U/Y ̸= X/Y +W/Y , thus
V/Y ≪P U/Y . Now, we have V ≤CSt U and V/Y ≪P U/Y , then V = Y , which
is a contradiction since Y is proper, therefore V ̸= X + Y , that is X ≪P V . �

From Proposition 2.16, we conclude the following.
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Corollary 2.17. Let X and V be submodules of an R-module U such that X ≤
V ≤ U . If X ≤CSt V and V ≤CSt U then X ≤CSt U .

Proof. LetW ≤ X withX/W ≪P U/W . Since V ≤CSt U , then by Proposition
2.14, V/W ≤CSt U/W , and by Proposition 2.15, X/W ≪P V/W . But X ≤CSt

V , therefore X = W , that is X ≤CSt U . �
”Recall that a submodule V of an R-module is called supplement (weakly

supplement) of W in U, if V is minimal with the property U = W+V equialently,
U = W +V and W ∩V ≪ V (resp. W ∩V ≪ U)” ([14]). ”A submodule V of U
is called a supplement submodule of U if V is a supplement of some submodule
of U, and an R-module U is called supplemented (weakly supplemented) if every
submodule of U has a supplement (resp. weakly supplement) in U” ([14]). Now
we need to give generalizations for these classes.

Definition 2.18. A submodule V of an R-module U is said to be Pr-supplement
(weakly Pr-supplement) of W in U if U = W + V and W ∩ V ≪P V (resp.
W ∩ V ≪P U). A submodule V of U is said to be Pr-supplement (weakly Pr-
supplement) submodule of U if V is a Pr-supplement (weakly Pr-supplement)
of some submodule of U. An R-module U is called Pr-supplemented (weakly
Pr-supplemented) if every submodule of U has a Pr-supplement (weakly Pr-
supplement) in U.

It is clear that every supplement is Pr-supplement submodule.

Examples 2.19.

i. Z4 is a Pr-supplemented module, since every submodule of Z4 has a Pr-
supplement.

ii. ZP∞ is Pr-supplemented, since ZP∞ an Pr-supplement of every proper
submodule of the Z-module ZP∞ .

iii. Z is not Pr-supplemented, since 2Z has no Pr-supplement submodule in
Z.

”An R-module U is called Noetherian if every submodule of U is finitely
generated” ([10], P.7).

Proposition 2.20. If U be a Noetherian module, then every Pr-supplement
submodule of U is CSt-closed submodule of U.

Proof. Let V be a Pr-supplement of a submodule L in U, then U = V +L and
V ∩L ≪P V . LetW ≤ V ≤ U such that V/W ≪P U/W . Since U is Noetherian,
then V/W ≪ U/W ([13], Prop.(1.7)), We can write U/W as follows:

U/W = (V + L)/W = V/W + (L+W )/W.

This implies that:
U/W = (L+W )/W
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hence U = L +W , and by minimality of V, we conclude that W = V , that is
V ≤CSt U . �

Remark 2.21. If we replace the condition ”Noetherian” in Proposition 2.20 by
”finitely generated” or ”multiplication”, then we deduce the same result, since
Hadi and Ibrahiem in ([13], Prop.(1.4)) showed that under these conditions the
concepts small and P -small submodules are equivalent.

From Propositions 2.16 and 2.20, we have the following

Theorem 2.22. Let U be a Noetherian (or multiplication) module, and V ≤ U .
Consider the following statements:

1. V is a Pr-supplement submodule of U.

2. V is CSt-closed submodule of U.

3. Condition*: ”For each submodule X of V; if X ≪P U then X ≪P V ”.

Then (1) ⇒ (2) ⇒ (3), and if U is weakly Pr-supplemented then (3) ⇒ (1).

Proof. (1) ⇒ (2) It is just Proposition 2.20.

(2) ⇒ (3) Proposition 2.16.

(3) ⇒ (1) Suppose the condition*, since U is weakly Pr-supplemented mod-
ule, then there exists a submodule L of U such that U = V +L and V ∩L ≪P U .
But V ∩ L ⊆ V , so by assumption V ∩ L ≪P V , hence V is Pr-supplement of
U. �

We need the following lemma.

Lemma 2.23 ([5], Prop. (2.4)). ”For a chained of submodules A ≤ B ≤ C ≤ U
of an R-module U; if A ≤cosm B in U and B ≤ce C in U then A ≤cosm B in
U”.

Proposition 2.24. Let U be a multiplication (finitely generated) module. For
a chain of a submodules A ≤ B ≤ C ≤ U , if A ≤cosm B in U and B ≤cosm C
in U, then A ≤cosm C in U.

Proof. The expression B ≤cosm C in U, means C/B ≪P U/B. Since U is
multiplication (finitely generated) then C/B ≪ U/B ([13], Prop. (1.4)), hence
B ≤ce C in U. Now, we have A ≤cosm B in U and B ≤ce C in U, by Lemma
2.23 we get A ≤cosm C in U. �

Proposition 2.25. Let U be a multiplication (finitely generated) R-module, then
for every non-zero submodule V of U, there exists a CSt-closed submodule K of
U with V ≤cosm K in U.
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Proof. Consider the set: F = {A|A is a submodule of U such that V ≤cosm A}
Note that F ̸= Φ, so by Zorns Lemma, F has a maximal element say K. In
order to prove that K is an CSt-closed submodule in U; assume that there
exists a submodule X of U such that K ≤cosm X ≤ U . Since V ≤cosm K and
K ≤cosm X, and U is multiplication so by Proposition 2.24, V ≤cosm X. But
this contradicts the maximality of K, thus K = X. Therefore K ≤CSt U with
V ≤cosm K in U. �

Proposition 2.26. Let U = X ⊕ Y where X and Y be two R-modules and
annRX + annRY = R. Assume that C = A ⊕ B where A ≤ X and B ≤ Y . If
C ≤CSt U then A ≤CSt U and B ≤CSt Y .

Proof. Suppose that (A/S) ≪P (X/S) and (B/W ) ≪P (Y/W ), where S ≤ A
and W ≤ B. Since annRX + annRY = R, then by [13]:

(A/S)⊕ (B/W ) ≪P (X/W )⊕ (Y/W ).

Hence:
(A⊕B)/(S ⊕W )) ≪P (X ⊕ Y )/(S ⊕W )

and so that:
(C/S ⊕W ) ≪P (U/S ⊕W ).

But C ≤CSt U , therefore C = S ⊕W . This implies that (A ⊕ B) = (S ⊕W ),
but S ≤ A and W ≤ B, therefore A = S and B = W . Thus A ≤CSt X and
B ≤CSt Y . �

Proposition 2.27. Let U be a multiplication module with U = X ⊕ Y where
X and Y be two R-modules and annRX + annRY = R. Then a submodule
C ≤CSt U if and only if there exist CSt-closed submodules A, B of X and Y
respectively such that C = A⊕B.

Proof. Assume that C ≤CSt U . since annRX + annRY = R, then by ([1],
Prop.(4.2)) there exist submodules A, B of X and Y respectively such that
C = A ⊕ B. By Proposition 2.26 both of A and B are CSt-closed submodules
X and Y respectively. Conversely, in order to prove that C ≤CSt U ; suppose
that C/W ≪P U/W , where W ≤ C ≤ U . Since annRX + annRY = R, so by
the same proof of ([1], Prop(4.2)), there exist W1 ≤ X and W2 ≤ Y such that
W = W1 ⊕W2. Now,

C/W = (A⊕B)/(W1 +W2) ≪P (X ⊕ Y )/(W1 +W2)

implies to:
A/W1 ⊕B/W2 ≪P X/W1 ⊕ Y/W2.

But U is multiplication, thus by [13]:

A/W1 ⊕B/W2 ≪ X/W1 ⊕ Y/W2.
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Hence:
A/W1 ≪ X/W1

and B/W2 ≪ Y/W2 ([10], P.20) Again, U is multiplication, so that:

A/W1 ≪P X/W1

and
B/W2 ≪P Y/W2.

Since A and B are CSt-closed submodules of X and Y respectively, thus A = W1

and B = W2, and hence C = A⊕B, thus C = W1⊕W2 = W , hence C ≤CSt U .�

3. Cosemi-extending module

In this section, we dualize the concept of semi-extending modules which is ap-
peared in [7]. We start by the following definition.

Definition 3.1. An R-module U is called cosemi-extending if every CSt-closed
submodule of U is direct summand.

Remarks and examples 3.2.

i. It is clear that every coextending module is cosemi-extending, where ”an
R-module U is called coextending (or CCS-module), if every coclosed
submodule of U is a direct summand of U” ([12]). This is follows from the
direct implication between CSt-closed and coclosed submodules.

ii. Z is cosemi-extending Z-module. In fact, the only CSt-closed submodule
of Z is (0) which is a direct summand of Z.

iii. Hollow modules is cosemi-extending, since it is coextending ([12]). In
particular ZP∞ is cosemi-extending module.

iv. Z2 ⊕ Z4 is a cosemi-extending Z-module, since it is coextending ([12]).

v. Every simple module is cosemi-uniform.

Proposition 3.3. Let U be an R-module, if every submodule of U is cosemi-
essential in a direct summand of U, then U is a cosemi-extending module.

Proof. Suppose that V is a CSt-closed submodule of U. By hypothesis, V ≤cosm

K in U, where K is a direct summand of U. But V is CSt-closed in U, thus
V = K, that is V is a direct summand of U. �

By using Proposition 2.25, the following gives a partial characterization of
cosemi-extending module.

Theorem 3.4. A multiplication (finitely generated) module U is cosemi-exten-
ding if and only if every submodule is cosemi-essential in a direct summand of
U.
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Proof. Assume that U is a cosemi-extending module, and let V be a submodule
of U. In case V = (0), then clearly V is a cosemi-essential submodule in a direct
summand of U. Otherwise; since U is multiplication (finitely generated) so by
Proposition 2.25, there exists an St-closed submodule K in U such that V ≤cosm

K in U. By hypotheses, K is a direct summand of U, therefore V ≤cosm K in
U. The converse is just Proposition 3.3. �

Proposition 3.5. Let U be a multiplication (finitely generated) and cosemi-
extending module. For every submodules X and Y of U. If X ∩ Y ≤CSt U , then
X ∩ Y is a direct summand of X and Y.

Proof. We have to show that X ∩ Y is a direct summand of X. Since U
is a multiplication (finitely generated) and cosemi-extending module, then by
Theorem 3.4, X ∩Y is cosemi-essential in a direct summand of U. But X ∩Y ≤
X ≤ U , so clearly X ∩ Y is a direct summand of X. �

Proposition 3.6. A direct summand of multiplication cosemi-extending module
is a cosemi-extending module.

Proof. Let U be an R-module, and V be a direct summand of U. Assume that
K is a CSt-closed submodule of V. Since U is multiplication and V is a direct
summand of U, then by Proposition 2.4, V is a CSt-closed submodule of U, and
by Corollary 2.16, K is a CSt-closed submodule of U. But U is cosemi-extending,
then U = L⊕K for some submodule L of U. Now, V = U ∩V = (K⊕L)∩V =
K ⊕ (L ∩ V ) by Modular Law. Thus K is a direct summand of V, that is, i.e V
is a cosemi-extending module. �

As a consequence of Proposition 3.6 we have the following. Before that, an
R-module U is said to be projective if every short exact sequence of the form:

(0) → W→V→U → (0)

splits ([16], P.23).

Corollary 3.7. Let f : U1 → U2 be an epimorphism from an R-module U1 to a
projective R-module U2. If U1 is a multiplication and cosemi-extending module,
then U2 is cosemi- extending.

Proof. Consider the following short exact sequence:

(0) → kerf
i→ U1

f→ U2 → (0),

where i is the inclusion homomorphism. Since U2 is a projective, then the
sequence splits. This implies that U1

∼= kerf ⊕ U2, so U2 is isomorphic to a
direct summand of U1. Since U1 is multiplication and cosemi-extending, so by
proposition 3.6, U2 is cosemi-extending. �

Corollary 3.8. Let U be a multiplication and cosemi-extending R-module, and
V is a CSt-closed submodule of U, then U/V is cosemi-extending.
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Proof. Since V is a CSt-closed submodule of U, and U is cosemi-extending,
then V is a direct summand of U, so U = V ⊕ L for some submodule W of U.
This implies that U/V ∼= L. But L is a direct summand of U, so by Proposition
3.6, U/V is cosemi-extending. �

Recall that an R-module U is called free if it has a basis ([16], P.21).

Proposition 3.9. Let U be a multiplication R-module, then every free R-module
is cosemi-extending if and only if every projective R-module is cosemi-extending.

Proof. For the necessity; let U be a projective R-module, then U is an epi-
morphic image of a free R-module say F ([16], P.23). By the hypothesis, F is a
cosemi-extending module. But U is multiplication, then by Corollary 3.7, U is
cosemi-extending. The converse is straightforward. �

”Recall that an R-module U is called duo, if every submodule of U is a
fully invariant” ([2]). The following theorem deals with the direct sum of two
cosemi-extending modules.

Theorem 3.10. Let U = X⊕Y be a duo module, where X and Y are R-modules.
Assume that annRX + annRY = R. If X and Y are cosemi-extending module
then U is cosemi-extending. the converse is true when U is multiplication

Proof. Assume that X and Y are cosemi-extending, and let V ≤CSt U . Since
U is a duo module, then V is fully invariant, hence V = (V ∩X)⊕ (V ∩Y ) ([2]).
By Proposition 2.8(1), V ∩X ≤CSt X and V ∩ Y ≤CSt Y respectively. But X
and Y are cosemi-extending, so V ∩X ⊕ S = X and V ∩ Y ⊕ T = Y for some
S ≤ X and T ≤ Y . This implies that:

X ⊕ Y = (V ∩X ⊕ S)⊕ (V ∩ Y ⊕ T ),

U = [(V ∩X)⊕ (V ∩ Y )]⊕ (S ⊕ T ).

If we put W = S ⊕ T , then U = V ⊕ W , thus V is a direct summand of U,
hence U is cosemi-extending. For the converse; since U is multiplication, then
the result follows by Proposition 3.6. �

Since every multiplication module is duo, then form Theorem 3.10 we deduce
the following.

Corollary 3.11. Let U be a multiplication module such that U = X⊕Y , where
X and Y be R-modules. If annRX + annRY = R, then U is a cosemi-extending
module if and only if X and Y are cosemi-extending.

4. Cosemi-extending module related concepts

This section deals with the relationships between cosemi-extending module and
other related concepts such as semisimple, Pr-hollow module, cosemi-uniform,
Pr-lifting and St-semisimple modules.
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Remark 4.1. Every semisimple module is cosemi-extending. This follows by
every submodule of semisimple module is CSt-closed. The converse is not true in
general, for example: Z12 is cosemi-extending Z-module, but it is not semisim-
ple.

”An R-module U is said to be Pr-hollow if every prime submodule of U is
small submodule” ([3]).

Proposition 4.2. Every Pr-hollow module is cosemi-extending module.

Proof. Assume that U is a Pr-hollow module. By Remark 2.10; the only CSt-
closed submodule of Pr-hollow module is zero, hence the result follows. �

The converse of Proposition 4.2 is not true in general, for example; Z is a
cosemi-extending Z-module, but not Pr-hollow module ([3], (1.2)(2)).

”Recall that a non-zero R-module U is called cosemi-uniform, if every proper
submodule V of U is either zero or there exists a proper submodule S of V such
that V/S ≪P U/S ” ([5]).

Proposition 4.3. Every cosemi-uniform module is cosemi-extending module.

Proof. Let U be a cosemi-extending module, and V be a submodule of U. If
V = (0) then either V is CSt-closed or not, in each case V is a direct summand
of U. If V ̸= (0), since U is a cosemi-uniform module so there exists a proper W
of V such that V/W ≪P U/W , therefore, V is not CSt-closed in U. So U has a
non-zero CSt-closed submodule, thus U is cosemi-extending.

The converse of Proposition 4.3 is not true in general, for example the Z-
module Z10 is a cosemi-extending module because it is a semisimple module,
but not a cosemi-uniform module, see ([5], Rem (3.2)(3)).

”A non-zero module U is called couniform, if every proper submodule V of U
is either zero or there exists a proper submodule W of V such that V/W ≪ U/W .
That is for each proper submodule V of U, eitherN = (0) or there exists a proper
submodule W of V such that W ≤ce V inU” ([11]).

Since every couniform module is cosemi-uniform, then we have the following.

Corollary 4.4. Every couniform module is cosemi-extending.

The converse of Corollary 4.4 is not true in general. In fact the Z-module
Z6 s not couniform module ([11], Rem.(1.2)(2)), while Z6 is cosemi-extending
because it is semisimple.

”Recall that a module U is called lifting, if for every submodule V of U
there exists a direct summand W of U such that W ≤ce V in U” ([14]). This
motivated us to define the following.
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Definition 4.5. An R-module U is called Pr-lifting, if for every submodule V
of U there exists a direct summand W of U such that W ≤cosm V in U.

This concept is clearly a proper subclass of lifting module, and we can prove
the following.

Proposition 4.6. If a module U is a Pr-lifting module, then U is cosemi-
extending.

Proof. Let V be a CSt-closed submodule of U. Since U is a Pr-lifting module,
so there exists a direct summand W of U, such that W ≤cosm V in U, that is
V/W ≪P U/W . But V ≤CSt U , then V = W . That is U is a cosemi-extending
module. �

The converse of Proposition 4.6 is not true in general, for example: Z as
Z-module is a cosemi-extending module, but it is not Pr-lifting.

”An R-module U is called St-semisimple if every submodule of U is St-closed”
([4]). As a dual of this concept, we introduce the following.

Definition 4.7. An R-module U is called CSt-semisimple, if every submodule
of U is CSt-closed.

The following theorem gives some useful relationships of a cosemi-essential
module with some related concepts.

Theorem 4.8. If U is CSt-semisimple, then the following statements are equiv-
alent.

1. U is a Pr-lifting module.

2. U is a cosemi-extending module.

3. U is a semisimple module.

Proof. (1) ⇒ (2) It is just Proposition 4.6.

(2) ⇒ (3) Let V be a submodule of U, since U is CSt-semisimple, then
V ≤CSt U . But U is cosemi-extending, therefore V is a direct summand of U.

(3) ⇒ (1) Let V be a submodule of U, by (3), V is a direct summand of
U. On the other hand, V ≤cosm V in U ([5], Rem (2.3)(6)). So U satisfies the
definition of Pr-lifting, and we are done. �

Hadi and Ibrahiem in [13] defined P -Rad(U) as a summation of all P -small
submodules of U, so we have the following.

Theorem 4.9. Let R be a ring such that P −Rad(R/A) = 0, for each ideal A
of R. Then every R-module is a cosemi-extending module if and only if R is a
semisimple ring.
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Proof. Assume that every R-module is cosemi-extending, then R is a cosemi-
extending R-module. So if I is a CSt-closed ideal of R, then I is a direct
summand of R. Assume that I is not CSt-closed ideal in R, then there exists
a proper ideal A of I such that I/A ≪P R/A. This implies that I/A ≤ P −
Rad(R/A) = 0, thus I/A = 0, hence A = I which a contradiction, therefore
I ≤CSt R. Since R is cosemi-extending R-module, then I is a direct summand of
R. i.e R is a semisimple ring. Conversely; since R is a semisimple ring, then every
R-module U is semisimple, hence every submodule of U is direct summand. In
particular; every CSt-closed submodule of U is direct summand. �

If the condition ”semisimple ring” in Theorem 4.9 is replaced by ”St-semisimple”,
then we need to add another condition as the following theorem shows.

Theorem 4.10. Let R be a ring such that P − Rad(R/A) = 0, for each ideal
A of R. Then every finitely generated R-module is a cosemi-extending module if
and only if R is an St-semisimple ring.

Proof. ⇒) It is as the same proof of Theorem 4.9.

⇐) Since R is finitely generated, then the concept of a CSt-closed submodule
coincide with coclosed submodule, see Corollary 2.5, and according that, there is
no difference between St-semisimple and semisimple modules, thus by Theorem
4.9, every R-module (hence every finitely generated) is cosemi-extending. �
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