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Abstract

Throughout this paper we introduce the concept of quasi closed sub-
modules which is weaker than the concept of closed submodules. By
using this concept we define the class of fully extending modules, where
an R-module M is called fully extending if every quasi closed submod-
ule of M is a direct summand.This class of modules is stronger than the
class of extending modules. Many results about this concept are given,
also many relationships with other related concepts are introduced.
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1 Introduction

Let R be a commutative ring with unity and let M be a unitary left R-module.
A submodule N of M is said to be essential in M , (denoted by N ≤e M), if for
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any submodule K of M, N ∩K = 0 implies that K = 0 [12], and a submodule
N of M is said to be closed in M if N has no proper essential extension in M ;
that is if N ≤e W < M then N=W [12]. An R-module M is called extending
(or CS-module), if every submodule of M is essential in a direct summand [6].
It is well known that an R-module M is extending if and only if every closed
submodule of M is a direct summand [6].

In this paper we introduce the concept of quasi-closed submodule (briefly
qc-submodule), where a submodule N of M is called qc-submodule if for each
x ∈ M with x �∈ N , there exists a closed submodule L of M containing N
and x �∈ L. it is clear that every closed submodule is a qc-submodule, but not
conversely (see Rem and Ex (2.2)(1)). Also we define fully extending module,
where an R-module M is called fully extending if every qc-submodule of M is
a direct summand

This research consists of three sections. In S2 we give a comprehensive
study of qc-submodules. Some results are analogous to properties of closed
submodules.In S3 we study the concept of fully extending module. It is clear
that every fully extending module is extending, but not conversely (see Rem
and Ex (3.2)(1)). A characterization of fully extending modules is given, so
we prove that an R-module M is fully extending module if and only if M is an
extending and has SIP(see Th (3.7)), where an R-module M has SIP if the
intersection of any two summands of M is a summand of M [15]. Moreover
many characterizations of fully extending modules in certain classes of modules
are given. Beside that many relationships between fully extending modules and
other related concepts are introduced. In S4 we show by examples that the
direct sum of fully extending modules may not be fully extending module(see
Ex (4.1)). However, we give certain conditions under which the direct sum
of fully extending modules be fully extending module (see Th (4.2) and Th
(4.3)).

2 Quasi-Closed submodules

In this section we introduce the concept of quasi-closed submodules. We inves-
tigate the basic properties of this type of submodules, some of these properties
are analogous to the properties of closed submodules.

Definition 2.1. A submodule N of an R-module M is called quasi-closed
(briefly qc-submodule), if for each x ∈ M with x �∈ N , there exists a closed
submodule L of M containing N such that x �∈ L. An ideal I of a ring R is
called qc-ideal if it is qc-submodule of an R-module R.



Fully extending modules 103

Remarks and Examples 2.2.

1. It is clear that every closed submodule is qc-closed submodule. However,
the converse is not true in general, for example: Let M=Z⊕Z2 be the Z-
module . The submodule N =< (2, 0̄) > is not closed since N is essential
in Z ⊕ (0̄). On the other hand we can see that N is a qc-submodule in
Z ⊕ (0̄) as follows: For any (n, 0̄) ∈ M , where n is odd integer),(n, 0̄) �∈
N , there exists a submodule L =< (1, 1̄) > of M containing N such that
(n, 0̄) �∈ N . Note that L is closed submodule in M since L⊕ ((0)⊕Z2) =
M . Also for any (n, 1̄) ∈ M , (n, 1̄) �∈ N . Take L1 = Z ⊕ (0̄), it is
clear that L1 is a direct summand of M hence it is closed submodule in
M and (n, 1̄) �∈ L1. Thus for each x ∈ M with x �∈ N there exists a
closed submodule L of M containing N such that x �∈ L. Therefore N is
a qc-submodule in M .

2. Every direct summand of an R-module M is a qc-submodule in M .

3. Let M be an R-module. if A ≤ B ≤ M such that A is a qc-submodule in
B and B is a qc-submodule in M , then A is a qc-submodule in M .

proof(3). Let x ∈ M with x �∈ A, then either x ∈ B or x �∈ B. If x ∈ B.
Since A is a qc-submodule in B, so there exists a closed submodule L in
B such that A ≤ L and x �∈ L. But L is closed in B and B is closed
in M , hence L is closed in M [12]. Thus we have a closed submodule L
in M containing A and x �∈ L. If x �∈ B, then nothing to prove since B
is a closed submodule in M containing A and x �∈ B. Therefore A is a
qc-submodule in M .

4. Let M be an R-module. if A ≤ B ≤ M and B is a qc-submodule in M
then B

A
is a qc-submodule in M

A
.

proof(4). It is clear.

The following proposition gives a characterization of qc-submodules.

Proposition 2.3. Let M be an R-module and let N be a submodule of M .
Then N is a qc-submodule in M if and only if there exists a collection of
submodules {Nα}α∈Λ , where Λ is an index set, such that ∀α ∈ Λ , Nα is a
closed submodule in M and N =

⋂
α∈Λ Nα.

proof. ⇒) If N is a closed submodule of M then nothing to prove. If N is
not closed submodule, then there exists a closed submodule L of M such that
N is an essential submodule of L.Assume that {Nα}α∈Λ, (where Λ is an index
set) be the collection of all closed submodules of M such that N ≤e Nα for
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each α ∈ Λ. Hence N ≤ N
⋂

α∈Λ Nα. Now, let x ∈ ⋂
α∈Λ Nα and suppose that

x �∈ N . Since N is a qc-submodule in M , so there exists a closed submodule
L of M containing N such that x �∈ L. Hence L = Nαi

for some αi ∈ Λ and
so x �∈ ⋂

α∈Λ Nα which is a contradiction. Thus
⋂

α∈Λ Nα = N .
⇐) Suppose that N =

⋂
α∈Λ Nα , where Nα is a closed submodule in M for

each α ∈ Λ and Nα containing N . let x ∈ M with x �∈ N , there exists αi ∈ Λ
such that x �∈ Nαi

. But N ≤ Nαi
and Nαi

is a closed submodule in M , hence
N is a qc-submodule in M .

Corollary 2.4. If A and B are qc-submodules in an R-module M , then
A ∩ B is qc-submodule in M .

By using Prop(2.3), we can give more examples about qc-submodules.

Examples 2.5.

1. Consider the Z-module M = Z8 ⊕ Z2.The submodule N =< (2̄, 0̄) >
is not closed submodule in M . Let N1 = Z8 ⊕ (0̄) =< (1̄, 0̄) > and
N2 =< (1̄, 1̄) >. It is easy to see that both of N1 and N2 are closed
submodules in M . Also N = N1 ∩N2. Thus N is a qc-submodule in M .
Similarly if L =< (4̄, 0̄) > , L is not closed in M and L = N1 ∩ N3,
where N3 =< (2̄, 1̄) >, and N1, N3 are closed submodules in M .

2. Let M be the Z-module Z4 ⊕ Z2. The submodule N =< (2̄, 0̄) > is
not closed in M . However, N = N1 ∩ N2, where N1 =< (1̄, 0̄) > and
N2 =< 1̄, 1̄) >. But N1⊕ < (0̄, 1̄) >= M and N2⊕ < (2̄, 1̄) >= M ,
hence N1 and N2 are closed in M . Thus N is a qc-submodule in M .

Proposition 2.6. Let M1 and M2 be two R-modules. If A is a qc-submodule
in M1, and B is a qc-submodule in M2, Then A ⊕ B is a qc-submodule in
M = M1 ⊕ M2.

Proof. Let X = (x1, x2) ∈ M1 ⊕ M2 with X �∈ A ⊕ B. then either x1 �∈ A
or x2 �∈ B. If x1 �∈ A. Since A is a qc-submodule in M1, so there exists a closed
submodule L1 in M1 such that L1 containing A and x1 �∈ L1. But L1 is closed
in M1 implies that L1 ⊕ M2 is closed in M [12], also L1 ⊕ M2 is containing
A ⊕ B and X �∈ L1 ⊕ M2. Similarly if x2 �∈ B, then there exists a closed
submodule in M containing A ⊕ B and does not contain X. Thus A ⊕ B is a
qc-submodule in M .

The converse of Prop(2.6) is true under certain condition as the following
proposition shows.
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Proposition 2.7. Let M1 and M2 be R-modules, and let A ≤ M1, B ≤ M2

such that annRM1+annRM2 = R. If A⊕B is a qc-submodule in M = M1⊕M2,
then A is a qc-submodule in M1 and B is a qc-submodule in M2.

Proof. In order to prove that A is a qc-submodule in M1, let x ∈ M1

with x �∈ A. Then (x, 0) �∈ A ⊕ B, But A ⊕ B is a qc-submodule of M , so
there exists a closed submodule L in M such that L containing A ⊕ B and
(x, 0) �∈ L. Since annRM1 + annRM2 = R, so by a part of the proof of ([1],
Prop (4.2), P.28), any submodule of M = M1 ⊕M2 can be written as a direct
sum of two submodules of M1 and M2 respectively, thus L = L1 ⊕L2 for some
L1 ≤ M1 and L2 ≤ M2. It follows that L1 is closed in M1 and L2 is closed
in M2. Since L containing A ⊕ B and (x, 0) �∈ L, then L1 containing A and
x �∈ L1. Therefore A is a qc-submodule in M1. Similarly, B is a qc-submodule
in M2.

Remark 2.8. the condition annRM1 + annRM2 = R is necessary in Prop
(2.7) as the following example shows: Let M be the Z-module Z4 ⊕ Z2. It is
clear that annzZ4 + annzZ2 = 2Z �= Z. Let N =< (2̄, 0̄) >= (2̄) ⊕ (0̄), we
see in Ex (2.5)(2), that N is a qc-submodule in M , but N1 = (2̄) is not a
qc-submodule in Z4.

As analogous statement to the result in ([12], Exc. 17, P.20) we give the
following.

Proposition 2.9. Let M be an R-module, and A, N be submodules of M .
If A is a qc-submodule in M and N ≤e M , then A ∩ N is a qc-submodule in
N .

Proof. Let x ∈ N with x �∈ A ∩ N . then x ∈ M and x �∈ A. Since A is a
qc-submodule in M , so there exists a closed submodule L in M containing A
such that x �∈ L. But L is closed in M and N ≤e M . This implies that L∩N
is closed in N ([12], Exc. 17, P.20). On the other hand, L ∩ N containing
A ∩ N , and x �∈ L ∩ N . Thus A ∩ N is a qc-submodule in N .

Recall that an R-module M is called multiplication if for each submodule
N of M there exists an ideal I of R such that N = IM [5]. Equivalently M
is a multiplication if for each submodule N of M , N = (N : RM)M where
(N : RM) = {r ∈ R|rM ⊆ M} [7].

Proposition 2.10. Let M be a faithful finitely generated multiplication R-
module, and let N be a submodule of M . Then the following statements are
equivalent:

1. N is a qc-submodule in M .
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2. (N : RM) is a qc-ideal in R.

3. N = IM for some qc-ideal I of R.

Proof. (1) ⇒(2): Let a ∈ R with a �∈ (N :R M). Then aM � N , so there
exists m ∈ M such that am �∈ N . But N is a qc-submodule in M , hence there
exists a closed submodule L of M containing N such that am �∈ L. On the
other hand, since M is a faithful finitely generated multiplication R-module,
then clearly that if L is a closed submodule in M then (L :R M) is a closed
ideal in R. Also am �∈ L implies that a �∈ (L :R M). Thus (L :R M) is a closed
ideal in R containing (N :R M) and a �∈ (N :R M). Therefore (N :R M) is a
qc-ideal in R.
(2)⇒(3): It is clear.
(3)⇒(1): Since I is a qc-ideal in R, so by Prop (2.3), there exists a collection
{Iα}α∈Λ, (Λ is some index set) of closed ideals in R such that I =

⋂
α∈Λ Iα .

Hence N =
⋂

α∈Λ(IαM), and by ([7], Prop (1.6)), (
⋂

α∈Λ Iα)M =
⋂

α∈Λ(IαM).
Now, since Iα is closed ideal in R and M is a faithful finitely generated multi-
plication module, so it is clear that for each α ∈ Λ ,IαM is a closed submodule
in M . Thus by Prop (2.3) N is a qc-submodule in M .

3 Fully Extending Modules

In this section we introduce and study a class of fully extending modules which
is stronger than the class of extending modules.

Definition 3.1. An R-module M is called fully extending, if every qc-
submodule of M is a direct summand of M . A ring R is called fully extending,
if R is a fully extending R-module.

Remarks and Examples 3.2.

1. It is clear that every fully extending module is an extending module. The
converse is not true in general as the following example shows: The Z-
module Z ⊕Z2 is an extending module but it is not fully extending, since
there exists a qc-submodule N =< (2, 0̄) > which is not direct summand
of Z ⊕ Z2, (See Rem and Ex (3.2)(1)).

2. An R-module M is an extending if and only if every qc-submodule of M
is essential in a direct summand.

3. Let M and Ḿ be two isomorphic R-modules. Then M is fully extending
module if and only if Ḿ is fully extending module.
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4. Every semisimple module is fully extending module, but the converse is
not true in general, for example the Z-module Z is fully extending module
and not semisimple module.

5. An R-module M is uniform if and only if M is indecomposable and fully
extending module.

Proof(5). It is straightforward, so it is omitted.

Proposition 3.3. A direct summand of fully extending module is fully ex-
tending.

Proof. Let N be a direct summand of M . Then M = N ⊕ W , for some
submodule W of M . Assume that K is a qc-submodule of N . Since N is a
direct summand of M , then N is a closed submodule of M , and so by Rem
and Ex (2.2)(3), K is a qc-submodule of M . Then by a definition of a fully
extending module, K is a direct summand of M . Thus M = K ⊕ T for some
submodule T of M . Now, N = M ∩ N = (K ⊕ T ) ∩ N . By a modular law
N = K ⊕ (T ∩ N). Thus K is a direct summand of N , and so N is a fully
extending module.

Corollary 3.4. If an R-module M is fully extending and N is a qc-submodule
of M , then M

N
is fully extending module.

Theorem 3.5. Let M be a faithful finitely generated R-module. Then M
is a fully extending module if and only if R is a fully extending ring.

Proof. ⇒) Let I be a qc-ideal in R. Put N = M . Since M is a multiplica-
tion R-module, then N = (N : RM)M [7], and since M is a finitely generated
multiplication, then by Th (2.10), N is a qc-submodule in M and so N is a
direct summand of M ; that is M = N ⊕ W for some submodule W of M .
But M is a multiplication module so W = JM for some ideal J of R. Thus
M = IM ⊕ JM = (I ⊕ J)M . And by ([7] Th (3.1)), R = I ⊕ J . Therefore I
is a direct summand of R, hence R is a fully extending ring.
⇐) The proof is similarly.

Recall that an R-module M has summand intersection property (briefly
SIP ), if for each two summand A and B of M , A ∩ B is also summand of M
[15]. Equivalently, M has SIP if and only if for each decomposition M = A⊕B
and for each R-homomorphism f : A → B, ker f is a direct summand of M
[10].

An R-module M has strongly summand intersection property (briefly SSIP ),
if the intersection of any collection of summands of M is a summand of M [3].
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An R-module M is called UC-module if for each submodule N of M ,
there exists a unique closed submodule W of M such that N is an essential
submodule of W [11]. The following lemma appeared in [3], we shall need it
in our work.

Lemma 3.6. Let M be an extending R-module. Then the following state-
ments are equivalent.

1. M has SIP property.

2. M has SSIP property.

3. M is UC-module.

The following theorem gives a characterization of fully extending modules.

Theorem 3.7. An R-module M is fully extending if and only if M is an
extending and has SIP property.

Proof ⇒) It is clear that M is an extending module. Let N1 and N2 be
two summand of M , then N1 and N2 are closed submodules of M . Hence
N = N1 ∩N2 is a qc-submodule of M . But M is a fully extending module, so
N is a direct summand of M . Thus M has SIP property.

⇐) Let N be a qc-submodule in M . By Prop(2.3), N = ∩α∈ΛNα , where
Nα is a closed submodule in M for each α ∈ Λ . Since M is an extending
module, so Nα is a direct summand of M for each α ∈ Λ . On the other hand
by lemma (3.6), M has SSIP , therefore N = ∩α∈ΛNα is a direct summand of
M . Thus M is a fully extending module.

By using Th (3.7), we can give the following example: Consider the Z-
module M = Z ⊕ Z. Since M has SIP (see Ex 5 in [3]), also M is an
extending module, so M is a fully extending module.

Corollary 3.8. Let M be an R-module. Then the following statements are
equivalent.

1. M is a fully extending module.

2. M an extending module and has SIP property.

3. M is an extending module and has SSIP property.

4. M is an extending and UC-module.

Corollary 3.9. Every extending multiplication module is fully extending
module.
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Proof. Since every multiplication module has SIP property ([2] Cor
(1.12)), so the result follows from Th (3.7).

S.A.G. Al-Saadi in [4], defined and studied the concept of strongly ex-
tending modules, where an R-module M is called strongly extending, if every
submodule of M is an essential in a stable direct summand. Equivalently, M
is a strongly extending module if and only if every closed submodule of M is
a stable direct summand [4]. And a submodule N of an R-module M is called
stable, if for each homomorphism f : N → M , f(N) ⊆ N [1].

The class of strongly extending module is contained in the class of fully
extending module, as the following proposition shows.

Proposition 3.10. Every strongly extending module is fully extending.

Proof. Assume that M is a strongly extending module. By [4], M is an
extending module. We depend on Th (3.7), so to prove that M is a fully
extending module, it is enough to show that M has SIP property. So suppose
that M = A ⊕ B where both of A and B are submodules of M , and f : A →
B ⊆ M . Since A is a direct summand of M , then A is closed in M . But M is
a strongly extending modules, therefore A is stable direct summand of M . It
follows that f(A) ⊆ A and so f(A) ⊆ A ∩ B = (0). Thus f(A) = (0); that is
kerf = A which is a direct summand of M . Thus M has SIP [10] property.

The following example shows that a fully extending module need not be
strongly extending module:

The Z-module M = Z2 ⊕ Z2 is a fully extending module since it is a
semisimple module, but M itself is not strongly extending. Because if N =
Z2 ⊕ (0̄) is a submodule of M , then N is a closed submodule in M . However,
N is not stable submodule of M .

Recall that an R-module M is called fully stable, if every submodule of M
is stable [1].A submodule N of an R-module M is called fully invariant if for
each R-homomorphism f : M → M , f(N) ⊆ N [8].

Proposition 3.11. Let M be a fully stable (or multiplication) R-module.
Then the following statements are equivalent.

1. M is a fully extending R-module.

2. M is a strongly extending R-module.

3. M is an extending R-module.
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Proof. If M is a fully stable module, then the result follows directly. Now
if M is a multiplication module, then:
(2)⇒(1): It follows from Prop (3.9).
(1)⇒ (3): It is clear.
(3)⇒ (2): Let N be a closed submodule in M . By (3), N is a direct summand of
M . Since M is a multiplication R-module, so N is a fully invariant submodule.
Thus N is a fully invariant summand of M , which implies that N is a stable
summand of M . Thus M is a strongly extending module

Corollary 3.12. For a ring R the following statements are equivalent.

1. R is a fully extending ring.

2. R is an extending ring.

3. R is strongly extending ring.

Okado in [14], showed that a ring R is Notherian if and only if every
extending R-module is expressed as a direct sum of indecomposable extending
(uniform) R-module. In [4], S.A.G. Al-saadi investigated analogous result; a
ring R is Notherian if and only if every strongly extending module is expressed
as a direct sum of uniform modules. Also he showed that an R-module M is
uniform if and only if M is indecomposable and strongly extending module.

So by these results and Rem and Ex (3.2)(5), we have the following result.

Proposition 3.13. A ring R is Notherian if and only if every fully extend-
ing R-module expressed as a direct sum of fully extending (uniform) modules.

Recall that an R-module M is called injective if for each homomorphism
f : A → B, where A and B are R-modules, and for each R-homomorphism
g : A → M , there exists an R-homomorphism h : B → M such that h ◦ f =
g [9]. An R-module M is called quasi-injective if for each monomorphism
f : A → M , where A is a submodule of M , and for each R-homomorphism
g : A → M there exists an R-homomorphism h : M → M such that h ◦ f = g
[9].

Theorem 3.14. Let M be an R-module. Then the following statements are
equivalent.

1. R is a semisimple ring.

2. All R-modules are fully extending modules.

3. All quasi-injective R-modules are fully extending modules.
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4. All injective R-modules have SIP property.

Proof. (1)⇒ (2)⇒ (3)⇒ (4): Clear.
(4)⇒ (1): It follows from Prop ((3).b in [15]).

Next we will give some other relations between fully extending modules
and other types of modules.

S.A.G. AL-Saadi in [4] defined and studied SS-module, where an R-module
M is called SS-module, if every direct summand of M is stable. He proved that
every strongly extending module is SS-module ([4], Rem and Ex (2.2.2)(8)),
and every SS-module has SIP property ([4] Prop (2.2.6)). Hence every ex-
tending SS-module is fully extending module. However, the converse is not
true in general, for example:

The Z-module M = Z2 ⊕ Z2 is a fully extending module but it is not SS-
module. Also M is not strongly extending module. Note we have the following
relations:

Fully extending modules ⇐ Strongly extending modules ⇒ SS-modules

The converses of these relations are not true in general. In fact it is easy
to see that under the class of fully stable (or multiplication modules), the
concepts: fully extending modules, extending SS-modules, strongly extending
and extending modules are equivalent.

Recall that an R-module M is called quasi-Dedekind if HomR(M
N

, M) = 0
for each nonzero submodule N of M . Equivalently, M is a quasi-Dedekind if
for each nonzero homomorphism f : M → M , kerf = 0 [13]. Also every quasi
Dedekind module is indecomposable, therefore every quasi Dedekind module
has SIP property ([13],Ch2, Rem (1.3)). Hence we have the following.

Proposition 3.15. Every extending quasi Dedekind module is fully extend-
ing.

Note that the Z-module Z15 is fully extending module, but it is not quasi-
Dedekind module; that is the converse of Prop 3.15 is not true in general.

Recall that an R-module M is called nonsingular if ZM(M) = 0, where
ZM(M) is the set of all m ∈ M such that ann(m) ≤e R [12], and M is called
polyform module, if for each submodule K of M and for each homomorphism
f : K → M , kerf is closed submodule in K [6]. Alkan and Harmanci in [3],
proved that every extending polyform module has SIP property; that is every
extending polyform module is a fully extending module. The converse is not
true in general, for example the Z-module Z12 is fully extending module but
it is not polyform module. However, every nonsingular module is a polyform
module. Thus every extending nonsingular module is a fully extending module.
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Next recall that an R-module M is called prime if ann(M) = ann(N) for
each nonzero submodule N of M . Then we have the following.

Proposition 3.16. Every injective prime module is fully extending module.

Proof. Let M be an injective prime module. By ([2], Prop (1.4)), M has
SIP . But it is well known that every injective module is an extending module,
therefore M is a fully extending module.

4 Direct Sum of Fully Extending Modules

Firstly notice that the direct sum of fully extending modules need not be fully
extending modules, as the following examples show.

Examples 4.1.

1. The Z-module Z(P∞) where P is a prime number, is a fully extending
module, but Z(P∞) ⊕ Z(P∞) is not fully extending module.

2. Each of Z2 and Z4 is a fully extending Z-module, but Z2⊕Z4 is not fully
extending Z-module.

3. Each of Z and Z2 is fully extending module, but Z ⊕ Z2 is not fully
extending module (see Rem and Ex 2.2(1)).

Theorem 4.2. Let M1 and M2 be two R-modules and let M = M1

⊕
M2

such that annRM1 +annRM2 = R. Then M is a fully extending module if and
only if M1 and M2 are fully extending modules.

Proof. ⇒) It follows from prop (3.3).
⇐) Let N be a qc-submodule of M . Since annRM1 + annRM2 = R, so by a
part of the proof of ([1], Prop (4.2), P.28), any submodule of M = M1 ⊕ M2

can be written as a direct sum of two submodules of M1 and M2 respectively.
Thus N = N1⊕N2 for some N1 ≤ M1 and N2 ≤ M2. But N is a qc-submodule
of M , then by Prop (2.7) both of N1 and N2 are qc-submodule of M1 and M2

respectively. But M1 and M2 are fully extending modules, hence N1 and N2

are direct summand of M1 and M2 respectively. It follows that N = N1 ⊕ N2

is a direct summand of M . Thus M is a fully extending module.

Theorem 4.3. Let M =
⊕

i∈I Mi, where Mi is a submodule of M ∀i ∈ I ,
and suppose that each closed submodule of M is a fully invariant. Then M is
a fully extending if and only if Mi is a fully extending module ∀i ∈ I .
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Proof. ⇒) It follows from Prop (3.3).
⇐) Since Mi is a fully extending module ∀i ∈ I , so by Th (3.7), Mi is

an extending and has SIP property for each ∀i ∈ I . On the other hand,
Mi is a direct summand of M ∀i ∈ I , so Mi is closed in M ∀i ∈ I . Thus
by hypothesis, , Mi is fully invariant submodule ∀i ∈ I , and by [15], M has
SIP property. Now to prove M is an extending module, let S be any closed
submodule of M and ∀i ∈ I ,πi : M → Mi be a natural projection. By
hypothesis, S is a fully invariant submodule, hence πi(S) ⊆ (S ∩ Mi) ∀i ∈ I.
It follows that for each i ∈ I , S =

⊕
i∈I(S ∩ Mi); that is ∀i ∈ I,S ∩ Mi is a

direct summand of M , and hence ∀i ∈ I , S ∩ Mi is a closed submodule in S,
hence for each i ∈ I , ∩ Mi is closed submodule in M [12]. On the other hand
S ∩Mi ≤ Mi ≤ M ∀i ∈ I . So S ∩Mi is a closed submodule in Mi ∀i ∈ I, and
since Mi is an extending module, so S∩Mi is a direct summand of Mi ∀i ∈ I .
It follows that S is a direct summand of M . Thus M is an extending module.
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