Let R be a commutative ring with identity 1 ¹ 0, and let M be a unitary left module over R. A submodule N of an R-module M is called essential, if whenever N ⋂ L = (0), then L = (0) for every submodule L of M. In this case, we write N ≤e M. An R-module M is called extending, if every submodule of M is an essential in a direct summand of M. A submodule N of an R-module M is called semi-essential (denoted by N ≤sem M), if N ∩ P ≠ (0) for each nonzero prime submodule P of M. The main purpose of this work is to determine and study two new concepts (up to our knowledge) which are St-closed submodules and semi-extending modules. St-closed submodules is contained properly in the class of closed submodules, where a submodule N of M is called St-closed in M, if N has no proper semi-essential extension in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K, then N = K. We investigate the main properties of this type of submodules, and discuss some results that are useful in our work. The class of semi-extending modules is a generalization to the notion of extending modules, where an R-module M is called semi-extending, if every submodule of M is a semi-essential in a direct summand of M. Various properties of semi-extending modules are obtained, and we study the relationships between this class of modules and other related concepts.
The -s-extending modules will be purpose of this paper, a module M is -s-extending if each submodule in M is essential in submodule has a supplement that is direct summand. Initially, we give relation between this concept with weakly supplement extending modules and -supplemented modules. In fact, we gives the following implications:
Lifting modules -supplemented modules -s-extending modules weakly supplement extending modules.
It is also we give examples show that, the converse of this result is not true. Moreover, we study when the converse of this result is true.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
An -module is extending if every submodule of is essential in a direct summand of . Following Clark, an -module is purely extending if every submodule of is essential in a pure submodule of . It is clear purely extending is generalization of extending modules. Following Birkenmeier and Tercan, an -module is Goldie extending if, for each submodule of , there is a direct summand D of such that . In this paper, we introduce and study class of modules which are proper generalization of both the purely extending modules and -extending modules. We call an -module is purely Goldie extending if, for each , there is a pure submodule P of such that . Many c
... Show MoreIn this article, we study the notion of closed Rickart modules. A right R-module M is said to be closed Rickart if, for each , is a closed submodule of M. Closed Rickart modules is a proper generalization of Rickart modules. Many properties of closed Rickart modules are investigated. Also, we provide some characterizations of closed Rickart modules. A necessary and sufficient condition is provided to ensure that this property is preserved under direct sums. Several connections between closed Rickart modules and other classes of modules are given. It is shown that every closed Rickart module is -nonsingular module. Examples which delineate this concept and some results are provided.
The concept of St-Polyform modules, was introduced and studied by Ahmed in [1], where a module M is called St-polyform, if for every submodule N of M and for any homomorphism ð‘“:N M; kerð‘“ is St-closed submodule in N. The novelty of this paper is to dualize this class of modules, the authors call it CSt-polyform modules, and according to this dualizations, some results which appeared in [1] are dualized for example we prove that in the class of hollow modules, every CSt-polyform module is coquasi-Dedekind. In addition, several important properties of CSt-polyform module are established, and other characterization of CSt-polyform is given. Moreover, many relationships of CSt-polyform modules with other related concepts are
... Show MoreIn this paper, a new class of sets, namely ï¡- semi-regular closed sets is introduced and studied for topological spaces. This class properly contains the class of semi-ï¡-closed sets and is property contained in the class of pre-semi-closed sets. Also, we introduce and study ï¡srcontinuity and ï¡sr-irresoleteness. We showed that ï¡sr-continuity falls strictly in between semi-ï¡- continuity and pre-semi-continuity.
Let R be a commutative ring with identity, and let M be a unity R-module. M is called a bounded R-module provided that there exists an element x?M such that annR(M) = annR(x). As a generalization of this concept, a concept of semi-bounded module has been introduced as follows: M is called a semi-bounded if there exists an element x?M such that . In this paper, some properties and characterizations of semi-bounded modules are given. Also, various basic results about semi-bounded modules are considered. Moreover, some relations between semi-bounded modules and other types of modules are considered.
In a previous work, Ali and Ghawi studied closed Rickart modules. The main purpose of this paper is to define and study the properties of y-closed Rickart modules .We prove that, Let and be two -modules such that is singular. Then is -y-closed Rickart module if and only if Also, we study the direct sum of y-closed Rickart modules.
Let R be a commutative ring with 1 and M be a (left) unitary R – module. This essay gives generalizations for the notions prime module and some concepts related to it. We termed an R – module M as semi-essentially prime if annR (M) = annR (N) for every non-zero semi-essential submodules N of M. Given some of their advantages characterizations and examples, and we study the relation between these and some classes of modules.