Preferred Language
Articles
/
PhgRUJcBVTCNdQwCRJc1
Nano lindeloff mappings
...Show More Authors

Abstract. The purpose of this work is to introduce and investigate new concepts of mappings namely nano paracompactmappings, nano locally limited, nano h-locally limited and finally nano-perfect in nano topology by using nano-closed sets. As well as, the relation between these concepts of mappings have been study in nano topology. Additionally, the nano topology groups of the types and advances results which are introduces in this work are very vital. We also presented the type of nano Lindeloff mappings, and the relations of them was introduce and discussed with several characteristics related it. Nano morphism also introduce.

Crossref
View Publication
Publication Date
Sat Oct 01 2022
Journal Name
University Of Baghdad, College Of Education For Pure Sciences / Ibn Al-haitham, Department Of Mathematics
On Fibrewise Fuzzy Topological Spaces
...Show More Authors

The aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuz

... Show More
Publication Date
Mon Feb 10 2025
Journal Name
Aip Conference Proceedings
Fibrewise micro-topological spaces
...Show More Authors

Abstract. One of the fibrewise micro-topological space is one in which the topology is decided through a group of fibre bundles, in comparison to the usual case in normal, fibrewise topological space. The micro-topological spaces draw power from their ability to be used in descriptions of a wide range of mathematical objects. These can be used to describe the topology of a manifold or even the topology of a group. Apart from easy manipulation, the fibrewise micro-topological spaces yield various mathematical applications, but the one being mentioned here is the possibility for geometric investigation of space or group structure. In this essay, we shall explain what fibrewise micro-topological spaces are, indicate why they are useful in math

... Show More
View Publication
Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Fixed Point Theorems in General Metric Space with an Application
...Show More Authors

   This paper aims to prove an existence theorem for Voltera-type equation in a generalized G- metric space, called the -metric space, where the fixed-point theorem in - metric space is discussed and its application.  First, a new contraction of Hardy-Rogess type is presented and also then fixed point theorem is established for these contractions in the setup of -metric spaces. As application, an existence result for Voltera integral equation is obtained.  

View Publication Preview PDF
Scopus (13)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2022
Journal Name
University Of Baghdad, College Of Education For Pure Sciences / Ibn Al-haitham, Department Of Mathematics
Fibrewise Slightly Topological Spaces and Their Generalizations
...Show More Authors

The aim of this thesis is to introduce a new concept of fibrewise topological spaces which is said to be fibrewise slightly topological spaces. We generalize some of the main results that have been reached from fibrewise topology into fibrewise slightly topological space. We introduce the concepts of fibrewise slightly closed, fibrewise slightly open, fibrewise locally sliceable, and fibrewise locally sectionable slightly topological spaces. Also, state and prove several propositions related to these concepts. On the other hand, extend separation axioms of ordinary topology into fibrewise setting. The separation axioms are said to be fibrewise slightly T_0 spaces, fibrewise slightly T_1 spaces, fibrewise slightly R_0 spaces, fibrewise s

... Show More
Publication Date
Wed Nov 13 2024
Journal Name
Aip Conference Proceedings
Fibrewise micro-ideal topological spaces
...Show More Authors

Abstract. In this study, we shall research the fibrewise micro ideal topological spaces over Ḃ, as well as the relationship between fibrewise micro ideal topological spaces over Ḃ and fibrewise micro topological spaces over Ḃ. At first present introduces a novel notion from fibrewise micro ideal topological spaces over Ḃ, and differentiates it from fibrewise micro topological spaces over Ḃ. Some fundamental characteristics from these spaces are studied. Then show discussed the fibrewise micro ideal closed and micro ideal open topologies. Many propositions relating to these ideas are offered. In the next part will study defines and investigates novel conceptions from fibrewise micro ideal topological spaces over Ḃ, particularly f

... Show More
View Publication
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Al-qadisiyah Journal Of Pure Science
Weakly and Strongly Forms of Fibrewise Fuzzy ω-Topological Spaces
...Show More Authors

This paper is devoted to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, Several characterizations and properties of this class are also given as well. Finally, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces.

View Publication Preview PDF
Publication Date
Sun Jun 03 2018
Journal Name
University Of Baghdad, College Of Education For Pure Sciences / Ibn Al-haitham, Department Of Mathematics
Some Types of Fibrewise Soft Topological Spaces
...Show More Authors

In this thesis, we introduced some types of fibrewise topological spaces by using a near soft set, various related results also some fibrewise near separation axiom concepts and a fibrewise soft ideal topological spaces. We introduced preliminary concepts of topological spaces, fibrewise topology, soft set theory and soft ideal theory. We explain and discuss new notion of fibrewise topological spaces, namely fibrewise soft near topological spaces, Also, we show the notions of fibrewise soft near closed topological spaces, fibrewise soft near open topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces. On the other hand, we studied fibrewise soft near forms of the more essent

... Show More
Publication Date
Sat Jan 01 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Fibrewise multi-topological spaces
...Show More Authors

We define and study new ideas of fibrewise topological space on D namely fibrewise multi-topological space on D. We also submit the relevance of fibrewise closed and open topological space on D. Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space on D. Furthermore, we propose and prove a number of statements about these ideas.

View Publication Preview PDF
Publication Date
Sun Oct 03 2021
Journal Name
Journal Of Interdisciplinary Mathematics
Fibrewise slightly separation axioms
...Show More Authors

The aim of this paper is to look at fibrewise slightly issuances of the more important separation axioms of ordinary topology namely fibrewise said to be fibrewise slightly T0 spaces, fibrewise slightly T1spaces, fibrewise slightly R0 spaces, fibrewise slightly T2 spaces, fibrewise slightly functionally T2 spaces, fibrewise slightly regular spaces, fibrewise slightly completely regular spaces, fibrewise slightly normal spaces. In addition, we announce and confirm many proposals related to these concepts.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2012
Journal Name
International Mathematical Forum
Fibrewise Near Separation Axioms
...Show More Authors

The purpose of this paper is to consider fibrewise near versions of the more important separation axioms of ordinary topology namely fibrewise near T0 spaces, fibrewise near T1 spaces, fibrewise near R0 spaces, fibrewise near Hausdorff spaces, fibrewise near functionally Hausdorff spaces, fibrewise near regular spaces, fibrewise near completely regular spaces, fibrewise near normal spaces and fibrewise near functionally normal spaces. Also we give several results concerning it.

Preview PDF