The theory of general topology view for continuous mappings is general version and is applied for topological graph theory. Separation axioms can be regard as tools for distinguishing objects in information systems. Rough theory is one of map the topology to uncertainty. The aim of this work is to presented graph, continuity, separation properties and rough set to put a new approaches for uncertainty. For the introduce of various levels of approximations, we introduce several levels of continuity and separation axioms on graphs in Gm-closure approximation spaces.
This research presents the concepts of compatibility and edge spaces in
In this paper we define and study new generalizations of continuous functions namely, -weakly (resp., w-closure, w-strongly) continuous and the main properties are studies: (a) If f : X®Y is w-weakly (resp., w-closure, w-strongly) continuous, then for any AÌX and any BÌY the restrictions fïA : A®Y and fB : f -1(B)®B are w-weakly (resp., w-closure, w-strongly) continuous. (b) Comparison between deferent forms of generalizations of continuous functions. (c) Relationship between compositions of deferent forms of generalizations of continuous functions. Moreover, we expanded the above generalizations and namely almost w-weakly (resp., w-closure, w-strongly) continuous functions and we state and prove several results concerning it.
In this paper we show that if ? Xi is monotonically T2-space then each Xi is monotonically T2-space, too. Moreover, we show that if ? Xi is monotonically normal space then each Xi is monotonically normal space, too. Among these results we give a new proof to show that the monotonically T2-space property and monotonically normal space property are hereditary property and topologically property and give an example of T2-space but not monotonically T2-space.
In this paper by using δ-semi.open sets we introduced the concept of weakly δ-semi.normal and δ-semi.normal spaces . Many properties and results were investigated and studied. Also we present the notion of δ- semi.compact spaces and we were able to compare with it δ-semi.regular spaces
We define and study new ideas of fibrewise topological space on D namely fibrewise multi-topological space on D. We also submit the relevance of fibrewise closed and open topological space on D. Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space on D. Furthermore, we propose and prove a number of statements about these ideas.
We introduce in this paper some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological spaces. In addition to introduce a new types of functions known as soft simply
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near compact and fibrewise locally near compact spaces, which are generalizations of well-known concepts near compact and locally near compact topological spaces. Moreover, we study relationships between fibrewise near compact (resp., fibrewise locally near compact) spaces and some fibrewise near separation axioms.
In this paper the concepts of weakly (resp., closure, strongly) Perfect Mappings are defined and the important relationships are studied: (a) Comparison between deferent forms of perfect mappings. (b) Relationship between compositions of deferent forms of perfect mappings. (c) Investigate relationships between deferent forms of perfect mappings and their graphs mappings.
In this paper we define and study new concepts of fibrwise totally topological spaces over B namely fibrewise totally compact and fibrwise locally totally compact spaces, which are generalization of well known concepts totally compact and locally totally compact topological spaces. Moreover, we study relationships between fibrewise totally compact (resp, fibrwise locally totally compact) spaces and some fibrewise totally separation axioms.