Preferred Language
Articles
/
Mxf74I0BVTCNdQwCmSgN
Rationally Extending Modules and Strongly Quasi-Monoform Modules
...Show More Authors

An R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2010
Journal Name
Iraqi Journal Of Science
PRIME HOLLOW MODULES
...Show More Authors

A non-zero module M is called hollow, if every proper submodule of M is small. In this work we introduce a generalization of this type of modules; we call it prime hollow modules. Some main properties of this kind of modules are investigated and the relation between these modules with hollow modules and some other modules are studied, such as semihollow, amply supplemented and lifting modules.

View Publication Preview PDF
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Semi – Bounded Modules
...Show More Authors

Let R be a commutative ring with identity, and let M be a unity R-module. M is called a bounded R-module provided that there exists an element x?M such that annR(M) = annR(x). As a generalization of this concept, a concept of semi-bounded module has been introduced as follows: M is called a semi-bounded if there exists an element x?M such that . In this paper, some properties and characterizations of semi-bounded modules are given. Also, various basic results about semi-bounded modules are considered. Moreover, some relations between semi-bounded modules and other types of modules are considered.

View Publication Preview PDF
Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semiprime Fuzzy Modules
...Show More Authors

  In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.

View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Coclosed Rickart Modules
...Show More Authors

   Let  be a right module over an arbitrary ring  with identity and  . In this work, the coclosed rickart modules as a generalization of  rickart  modules is given. We say  a module  over   coclosed rickart if for each ,   is a coclosed submodule of  . Basic results over this paper are introduced and connections between these modules and otherwise notions are investigated.

 

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 04 2011
Journal Name
Baghdad Science Journal
Approximate Regular Modules
...Show More Authors

There are two (non-equivalent) generalizations of Von Neuman regular rings to modules; one in the sense of Zelmanowize which is elementwise generalization, and the other in the sense of Fieldhowse. In this work, we introduced and studied the approximately regular modules, as well as many properties and characterizations are considered, also we study the relation between them by using approximately pointwise-projective modules.

View Publication Preview PDF
Crossref
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Max-Modules
...Show More Authors

   In this paper ,we introduce a concept of Max– module as follows: M is called a Max- module if ann N R is a maximal ideal of R, for each non– zero submodule N of M;       In other words, M is a Max– module iff (0) is a *- submodule, where  a proper submodule N of M is called a *- submodule if [ ] : N K R is a maximal ideal of R, for each submodule K contains N properly.       In this paper, some properties and characterizations of max– modules and  *- submodules are given. Also, various basic results a bout Max– modules are considered. Moreover, some relations between max- modules and other types of modules are considered.

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
2-Regular Modules
...Show More Authors

  In this paper we introduced the concept of 2-pure submodules as a generalization of pure submodules, we study some of its basic properties and by using this concept we define the class of 2-regular modules, where an R-module M is called 2-regular module if every submodule is 2-pure submodule. Many results about this concept are given. 

View Publication Preview PDF
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fuzzy Distributive Modules
...Show More Authors

  Let R be a commutative ring with unity. In this paper we introduce and study fuzzy distributive modules and fuzzy arithmetical rings as generalizations of (ordinary) distributive modules and arithmetical ring. We give some basic properties about these concepts.  

View Publication Preview PDF
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
δ-Hollow Modules
...Show More Authors

    Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N ≪ M), i.e. N + W ≠ M for every proper submodule W in M. A δ-hollow module is a generalization of hollow module, where an R-module M is called δ-hollow module if every proper submodule N of M is δ-small (N δ  M), i.e. N + W ≠ M for every proper submodule W in M with M W is singular. In this work we study this class of modules and give several fundamental properties related with this concept

View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Semihollow-Lifting Modules and Projectivity
...Show More Authors

Throughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref