Preferred Language
Articles
/
jih-1818
Coclosed Rickart Modules

   Let  be a right module over an arbitrary ring  with identity and  . In this work, the coclosed rickart modules as a generalization of  rickart  modules is given. We say  a module  over   coclosed rickart if for each ,   is a coclosed submodule of  . Basic results over this paper are introduced and connections between these modules and otherwise notions are investigated.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Iraqi Journal Of Science
On Closed Rickart Modules

In this article, we study the notion of closed Rickart modules. A right R-module M is said to be closed Rickart if, for each , is a closed submodule of M. Closed Rickart modules is a proper generalization of Rickart modules. Many properties of closed Rickart modules are investigated. Also, we provide some characterizations of closed Rickart modules. A necessary and sufficient condition is provided to ensure that this property is preserved under direct sums. Several connections between closed Rickart modules and other classes of modules are given. It is shown that every closed Rickart module is -nonsingular module. Examples which delineate this concept and some results are provided.

View Publication Preview PDF
Publication Date
Wed Nov 27 2019
Journal Name
Iraqi Journal Of Science
ON RICKART MODULES

Gangyong Lee, S.Tariq Rizvi, and Cosmin S.Roman studied Rickart modules.

The main purpose of this paper is to develop the properties of Rickart modules .

We prove that each injective and prime module is a Rickart module. And we give characterizations of some kind of rings in term of Rickart modules.

Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Oct 16 2014
Journal Name
Journal Of Advances In Mathematics
View Publication Preview PDF
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
On Strong Dual Rickart Modules

    Gangyong Lee, S. Tariq Rizvi, and Cosmin S. Roman studied Dual Rickart modules. The main purpose of this paper is to define strong dual Rickart module. Let M and N be R- modules , M is called N- strong dual Rickart module (or relatively sd-Rickart to N)which is  denoted by M it is N-sd- Rickart if for every submodule A of M and every homomorphism fHom (M , N) , f (A) is a direct summand of N. We prove that for an R- module M , if R is M-sd- Rickart , then every cyclic submodule of M is a direct summand . In particular, if M<

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Oct 28 2020
Journal Name
Iraqi Journal Of Science
On y-closed Rickart Modules

     In a previous work, Ali and Ghawi studied closed Rickart modules. The main purpose of this paper is to define and study the properties of y-closed Rickart modules .We prove that, Let  and   be two -modules such that  is singular. Then  is -y-closed Rickart module if and only if   Also, we study the direct sum  of  y-closed Rickart modules.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
On y-closed Dual Rickart Modules

In this paper, we develop the work of Ghawi on close dual Rickart modules and discuss y-closed dual Rickart modules with some properties. Then, we prove that, if are y-closed simple -modues and if -y-closed is a dual Rickart module, then either Hom ( ) =0 or . Also, we study the direct sum of y-closed dual Rickart modules.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
International Mathematical Forum
Crossref
View Publication Preview PDF
Publication Date
Sun Dec 29 2019
Journal Name
Iraqi Journal Of Science
ET-Coessential and ET-Coclosed submodules

Let M be an R-module, where R be a commutative;ring with identity. In this paper, we defined a new kind of submodules, namely; ET-coessential and ET-Coclosed submodules of M. Let T be a submodule of M. Let K  H  M, K  is called  ET-Coessential of H in M (K⊆ET.ce H), if     . A submodule H is called ET- coclosed in M of H has no proper coessential submodule in M, we denote by  (K⊆ET.cc H) , that is, K⊆ET.ce H implies that   K = H. In our work, we introduce;some properties of ET-coessential and ET-coclosed submodules of M.

Scopus (4)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Large-Coessential and Large-Coclosed Submodules

The goal of this research is to introduce the concepts of Large-coessential submodule and Large-coclosed submodule, for which some properties are also considered. Let M  be an R-module and K, N are submodules of M such that , then K is said to be Large-coessential submodule, if . A submodule N of M is called Large-coclosed submodule, if K is Large-coessential submodule of N in M, for some submodule K of N, implies that  .

Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
R-annihilator-Coessential and R-annihilator-Coclosed Submodules

Let be a unitary left R-module on associative ring with identity. A submodule of is called -annihilator small if , where is a submodule of , implies that ann( )=0, where ann( ) indicates annihilator of in . In this paper, we introduce the concepts of -annihilator-coessential and - annihilator - coclosed submodules. We give many properties related with these types of submodules.

Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF