Abstract. Fibrewise micro-topological spaces be a useful tool in various branches of mathematics. These mathematical objects are constructed by assigning a micro-topology to each fibre from a fibre bundle. The fibrewise micro-topological space is then formed by taking the direct limit of these individual micro-topological spaces. It can be adapted to analyze various mathematical structures, from algebraic geometry to differential equations. In this study, we delve into the generalizations of fibrewise micro-topological spaces and explore the applications of these abstract structures in different branches of mathematics. This study aims to define the fibrewise micro topological space through the generalizations that we use in this paper, which are fibrewise micro-regular, fibrewise micro-pre, fibrewise micro-semi, fibrewise micro-Ƅ, fibrewise micro-ꭀ, and fibrewise micro-semi-pre-topological space, and to study the correlation relations These generalizations and examples. As well as discussing and studying scientific terminology in continuity and micro open and micro closed sums when proving them with the generalizations contained in the fibrewise micro-topology, with the study of concepts between functions in terms of structure and transitional qualities between the field and the corresponding field via the influence of the fibrewise micro-topology and generalizations, and examining which of the proofs and theories are verified and which are not, with its refutation, with examples that achieve the scientific purpose.
We introduce and discuss recent type of fibrewise topological spaces, namely fibrewise soft bitopological spaces. Also, we introduce the concepts of fibrewise closed soft bitopological spaces, fibrewise open soft bitopological spaces, fibrewise locally sliceable soft bitopological spaces and fibrewise locally sectionable soft bitopological spaces. Furthermore, we state and prove several propositions concerning these concepts.
In this paper we define and study new concepts of fibrwise totally topological spaces over B namely fibrewise totally compact and fibrwise locally totally compact spaces, which are generalization of well known concepts totally compact and locally totally compact topological spaces. Moreover, we study relationships between fibrewise totally compact (resp, fibrwise locally totally compact) spaces and some fibrewise totally separation axioms.
studied, and its important properties and relationship with both closed and open Nano sets were investigated. The new Nano sets were linked to the concept of Nano ideal, the development of nano ideal mildly closed set and it has been studied its properties. In addition to the applied aspect of the research, a sample was taken from patients infected with viral hepatitis, and by examining the infected people and using closed and open (nano mildly. and nano ideal mildly) sets, the important symptoms that constitute the core of this dangerous examining the infected people and using closed and open (nano mildly. and nano ideal mildly) sets, the important symptoms that constitute the core of this dangerous disease.
The aim of this paper is to look at fibrewise slightly issuances of the more important separation axioms of ordinary topology namely fibrewise said to be fibrewise slightly T0 spaces, fibrewise slightly T1spaces, fibrewise slightly R0 spaces, fibrewise slightly T2 spaces, fibrewise slightly functionally T2 spaces, fibrewise slightly regular spaces, fibrewise slightly completely regular spaces, fibrewise slightly normal spaces. In addition, we announce and confirm many proposals related to these concepts.
The purpose of this paper is to consider fibrewise near versions of the more important separation axioms of ordinary topology namely fibrewise near T0 spaces, fibrewise near T1 spaces, fibrewise near R0 spaces, fibrewise near Hausdorff spaces, fibrewise near functionally Hausdorff spaces, fibrewise near regular spaces, fibrewise near completely regular spaces, fibrewise near normal spaces and fibrewise near functionally normal spaces. Also we give several results concerning it.
In this paper, a new type of supra closed sets is introduced which we called supra β*-closed sets in a supra topological space. A new set of separation axioms is defined, and its many properties are examined. The relationships between supra β*-Ti –spaces (i = 0, 1, 2) are studied and shown with instances. Additionally, new varieties of supra β*-continuous maps have been taken into consideration based on the supra β*-open sets theory.
The concept of -closedness, a kind of covering property for topological spaces, has already been studied with meticulous care from different angles and via different approaches. In this paper, we continue the said investigation in terms of a different concept viz. grills. The deliberations in the article include certain characterizations and a few necessary conditions for the -closedness of a space, the latter conditions are also shown to be equivalent to -closedness in a - almost regular space. All these and the associated discussions and results are done with grills as the prime supporting tool.
This research presents the concepts of compatibility and edge spaces in
Topology and its applications occupy the interest of many researching centers in the advanced world. From this point of view and because the near open sets play a very important role in general topology and they are now the research topics of many topologists worldwide and its sets doesn’t enter in fibrewise topology yet. Therefore, we use some of the near open sets to be model for introduce results and new spaces in fibrewise topological spaces. Also, there is a very important role of closure operators in constructing a topological spaces, so we introduce a new closure operators on the power set of vertices on graphs and conclusion theorems and new spaces from it. Furthermore, we discuss the relationships of connectedness between some ty
... Show MoreThis paper introduces some properties of separation axioms called α -feeble regular and α -feeble normal spaces (which are weaker than the usual axioms) by using elements of graph which are the essential parts of our α -topological spaces that we study them. Also, it presents some dependent concepts and studies their properties and some relationships between them.