Preferred Language
Articles
/
GBbUtYkBVTCNdQwCgYzr
Stability and bifurcation of a prey-predator system incorporating fear and refuge

It is proposed and studied a prey-predator system with a Holling type II functional response that merges predation fear with a predator-dependent prey's refuge. Understanding the impact of fear and refuge on the system's dynamic behavior is one of the objectives. All conceivable steady-states are investigated for their stability. The persistence condition of the system has been established. Local bifurcation analysis is performed in the Sotomayor sense. Extensive numerical simulation with varied parameters was used to explore the system's global dynamics. A limit cycle and a point attractor are the two types of attractors in the system. It's also interesting to note that the system exhibits bi-stability between these 2 types of attractors. Fear also has a destabilizing effect on the dynamics of the system.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Nov 01 2014
Journal Name
International Journal Of Basic And Applied Sciences
A reliable iterative method for solving the epidemic model and the prey and predator problems

In the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a

... Show More
Crossref (4)
Crossref
View Publication
Publication Date
Wed Dec 15 2021
Journal Name
Abstract And Applied Analysis
Dynamical Behaviors of a Fractional-Order Three Dimensional Prey-Predator Model

In this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynami

... Show More
Scopus (6)
Crossref (6)
Scopus Crossref
View Publication
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
The The Dynamics of a Prey-Predator Model with Infectious Disease in Prey: Role of Media Coverage

In this paper, an eco-epidemiological model with media coverage effect is proposed and studied. A prey-predator model with modified Leslie-Gower and functional response is studied. An  -type of disease in prey is considered.  The existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of this system are carried out. The conditions for the persistence of all species are established. The local bifurcation in the model is studied. Finally, numerical simulations are conducted to illustrate the analytical results.

Scopus (5)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Mar 27 2020
Journal Name
Iraqi Journal Of Science
On The Mathematical Model of Two- Prey and Two-Predator Species

In this work, we study two species of predator with two species of prey model, where the two species of prey live in two diverse habitats and have the ability to group-defense. Only one of the two predators tends to switch between the habitats. The mathematical model has at most 13 possible equilibrium points, one of which is the point of origin, two are axial, tow are interior points and the others are boundary points. The model with , where n is the switching index, is discussed regarding the boundedness of its solutions and the local stability of its equilibrium points. In addition, a basin of attraction was created for the interior point. Finally, three numerical examples were given to support the theoretical results.

Scopus (6)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Environmental Accounting And Management
On the Food Chain Model with Sokol Howell Functional Response and Prey Refuge

The cheif aim of the present investigation is to develop Leslie Gower type three species food chain model with prey refuge. The intra-specific competition among the predators is considered in the proposed model. Besides the logistic growth rate for the prey species, Sokol Howell functional response for predation is chosen for our model formulation. The behaviour of the model system thoroughly analyses near the biologically significant equilibria. The linear stability analysis of the equilibria is carried out in order to examine the response of the system. The present model system experiences Hopf bifurcation depending on the choice of suitable model parameters. Extensive numerical simulation reveals the validity of the proposed model.

Scopus (1)
Scopus Clarivate
Publication Date
Mon Aug 01 2022
Journal Name
Journal Of Physics: Conference Series
The local bifurcation analysis of two preys stage-structured predator model with anti-predator behavior
Abstract<p>This paper deals with two preys and stage-structured predator model with anti-predator behavior. Sufficient conditions that ensure the appearance of local and Hopf bifurcation of the system have been achieved, and it’s observed that near the free predator, the free second prey and the free first prey equilibrium points there are transcritical or pitchfork and no saddle node. While near the coexistence equilibrium point there is transcritical, pitchfork and saddle node bifurcation. For the Hopf bifurcation near the coexistence equilibrium point have been studied. Further, numerical analysis has been used to validate the main results.</p>
Crossref
View Publication
Publication Date
Wed Jan 01 2020
Journal Name
Proceedings Of The 2020 2nd International Conference On Sustainable Manufacturing, Materials And Technologies
Crossref (5)
Crossref
View Publication
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Dynamics of Predator-prey Model under Fluctuation Rescue Effect

This paper presents a novel idea as it investigates the rescue effect of the prey with fluctuation effect for the first time to propose a modified predator-prey model that forms a non-autonomous model. However, the approximation method is utilized to convert the non-autonomous model to an autonomous one by simplifying the mathematical analysis and following the dynamical behaviors. Some theoretical properties of the proposed autonomous model like the boundedness, stability, and Kolmogorov conditions are studied. This paper's analytical results demonstrate that the dynamic behaviors are globally stable and that the rescue effect improves the likelihood of coexistence compared to when there is no rescue impact. Furthermore, numerical simul

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Sep 12 2022
Journal Name
Communications In Mathematical Biology And Neuroscience
The influence of fear on the dynamic of an eco-epidemiological system with predator subject to the weak Allee effect and harvesting

In this paper, an eco-epidemiological prey-predator system when the predator is subjected to the weak Allee effect, and harvesting was proposed and studied. The set of ordinary differential equations that simulate the system’s dynamic is constructed. The impact of fear and Allee’s effect on the system's dynamic behavior is one of our main objectives. The properties of the solution of the system were studied. All possible equilibrium points were determined, and their local, as well as global stabilities, were investigated. The possibility of the occurrence of local bifurcation was studied. Numerical simulation was used to further evaluate the global dynamics and understood the effects of varying parameters on the asymptotic behavior of t

... Show More
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Jan 10 2012
Journal Name
Iraqi Journal Of Science
THE IMPACT OF DISEASE AND HARVESTING ON THE DYNAMICAL BEHAVIOR OF PREY PREDATOR MODEL

In this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.

View Publication Preview PDF