Preferred Language
Articles
/
Ixc7eo0BVTCNdQwCvxUB
The Dynamics of a Tritrophic Leslie-Gower Food-Web System with the Effect of Fear
...Show More Authors

The avoidance strategy of prey to predation and the predation strategy for predators are important topics in evolutionary biology. Both prey and predators adjust their behaviors in order to obtain the maximal benefits and to raise their biomass for each. Therefore, this paper is aimed at studying the impact of prey’s fear and group defense against predation on the dynamics of the food-web model. Consequently, in this paper, a mathematical model that describes a tritrophic Leslie-Gower food-web system is formulated. Sokol-Howell type of function response is adapted to describe the predation process due to the prey’s group defensive capability. The effects of fear due to the predation process are considered in the first two levels. It is assumed that the generalist predator grows logistically using the Leslie-Gower type of growth function. All the solution properties of the model are studied. Local dynamics behaviors are investigated. The basin of attraction for each equilibrium is determined using the Lyapunov function. The conditions of persistence of the model are specified. The study of local bifurcation in the model is done. Numerical simulations are implemented to show the obtained results. It is watched that the system is wealthy in its dynamics including chaos. The fear factor works as a stabilizing factor in the system up to a specific level; otherwise, it leads to the extinction of the predator. However, increasing the prey’s group defense leads to extinction in predator species.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
The Dynamics of Modified Leslie-Gower Predator-Prey Model Under the Influence of Nonlinear Harvesting and Fear Effect
...Show More Authors

A modified Leslie-Gower predator-prey model with fear effect and nonlinear harvesting is developed and investigated in this study. The predator is supposed to feed on the prey using Holling type-II functional response. The goal is to see how fear of predation and presence of harvesting affect the model's dynamics. The system's positivity and boundlessness are demonstrated. All conceivable equilibria's existence and stability requirements are established. All sorts of local bifurcation occurrence conditions are presented. Extensive numerical simulations of the proposed model are shown in form of Phase portraits and direction fields. That is to guarantee the correctness of the theoretical results of the dynamic behavior of the system and t

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (3)
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Modeling and Analyzing the Influence of Fear on the Harvested Modified Leslie-Gower Model
...Show More Authors

A modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify the va

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Mon Feb 20 2023
Journal Name
Baghdad Science Journal
Modeling and Analyzing the Influence of Fear on the Harvested Modified Leslie-Gower Model
...Show More Authors

A modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify t

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
The Impact of Fear and Prey Refuge on the Dynamics of the Food Web Involving Scavenger
...Show More Authors

        In this paper, the effects of prey’s fear on the dynamics of the prey, predator, and scavenger system incorporating a prey refuge with the linear type of functional response were studied theoretically as well as numerically approach. The local and global stabilities of all possible equilibrium points are investigated. The persistence conditions of the model are established. the local bifurcation analysis around the equilibrium points, as well as the Hopf bifurcation near the positive equilibrium point, are discussed and analyzed. Finally, numerical simulations are carried out, and the obtained trajectories are drowned using the application of Matlab version (6) to explain our found analytical

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Sep 11 2022
Journal Name
Mathematics
Modeling and Analysis of the Influence of Fear on a Harvested Food Web System
...Show More Authors

The food web is a crucial conceptual tool for understanding the dynamics of energy transfer in an ecosystem, as well as the feeding relationships among species within a community. It also reveals species interactions and community structure. As a result, an ecological food web system with two predators competing for prey while experiencing fear was developed and studied. The properties of the solution of the system were determined, and all potential equilibrium points were identified. The dynamic behavior in their immediate surroundings was examined both locally and globally. The system’s persistence demands were calculated, and all conceivable forms of local bifurcations were investigated. With the aid of MATLAB, a numerical simu

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Communications In Mathematical Biology And Neuroscience
Effects of fear and refuge strategy dependent on predator in food web dynamics
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
The Dynamics of a Food Web System: Role of a Prey Refuge Depending on Both Species
...Show More Authors

This paper aims to study the role of a prey refuge that depends on both prey and predator species on the dynamics of a food web model. It is assumed that the food transfer among the web levels occurs according to Lotka-Volterra functional response. The solution properties, such as existence, uniqueness, and uniform boundedness, are discussed. The local, as well as the global, stabilities of the solution of the system are investigated. The persistence of the system is studied with the assistance of average Lyapunov function. The local bifurcation conditions that may occur near the equilibrium points are established. Finally, numerical simulation is used to confirm our obtained results. It is observed that the system has only one type of a

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (1)
Scopus Crossref
Publication Date
Wed Aug 10 2022
Journal Name
Mathematics
Modeling and Analysis of the Influence of Fear on the Harvested Modified Leslie–Gower Model Involving Nonlinear Prey Refuge
...Show More Authors

Understanding the effects of fear, quadratic fixed effort harvesting, and predator-dependent refuge are essential topics in ecology. Accordingly, a modified Leslie–Gower prey–predator model incorporating these biological factors is mathematically modeled using the Beddington–DeAngelis type of functional response to describe the predation processes. The model’s qualitative features are investigated, including local equilibria stability, permanence, and global stability. Bifurcation analysis is carried out on the temporal model to identify local bifurcations such as transcritical, saddle-node, and Hopf bifurcation. A comprehensive numerical inquiry is carried out using MATLAB to verify the obtained theoretical findings and und

... Show More
View Publication
Scopus (9)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Nov 03 2022
Journal Name
Frontiers In Applied Mathematics And Statistics
Prey fear of a specialist predator in a tri-trophic food web can eliminate the superpredator
...Show More Authors

We propose an intraguild predation ecological system consisting of a tri-trophic food web with a fear response for the basal prey and a Lotka–Volterra functional response for predation by both a specialist predator (intraguild prey) and a generalist predator (intraguild predator), which we call the superpredator. We prove the positivity, existence, uniqueness, and boundedness of solutions, determine all equilibrium points, prove global stability, determine local bifurcations, and illustrate our results with numerical simulations. An unexpected outcome of the prey's fear of its specialist predator is the potential eradication of the superpredator.

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Mon Jan 27 2020
Journal Name
Iraqi Journal Of Science
The Dynamics of A Square Root Prey-Predator Model with Fear
...Show More Authors

An ecological model consisting of prey-predator system involving the prey’s fear is proposed and studied. It is assumed that the predator species consumed the prey according to prey square root type of functional response. The existence, uniqueness and boundedness of the solution are examined. All the possible equilibrium points are determined. The stability analysis of these points is investigated along with the persistence of the system. The local bifurcation analysis is carried out. Finally, this paper is ended with a numerical simulation to understand the global dynamics of the system.

View Publication Preview PDF
Scopus (27)
Crossref (10)
Scopus Crossref