In this paper a prey-predator model involving Holling type IV functional response
and intra-specific competition is proposed and analyzed. The local stability analysis of
the system is carried out. The occurrence of a simple Hopf bifurcation is investigated.
The global dynamics of the system is investigated with the help of the Lyapunov
function and poincare-bendixson theorem. Finally, the numerical simulation is used to
study the global dynamical behavior of the system. It is observed that, the system has
either stable point or periodic dynamics.
In this paper, a mathematical model consisting of harmful phytoplankton and two competing zooplankton is proposed and studied. The existence of all possible equilibrium points is carried out. The dynamical behaviors of the model system around biologically feasible equilibrium points are studied. Suitable Lyapunov functions are used to construct the basins of attractions of those points. Conditions for which the proposed model persists are established. The occurrence of local bifurcation and a Hopf bifurcation are investigated. Finally, to confirm our obtained analytical results and specify the vital parameters, numerical simulations are used for a hypothetical set of parameter values.
In this paper, a Sokol-Howell prey-predator model involving strong Allee effect is proposed and analyzed. The existence, uniqueness, and boundedness are studied. All the five possible equilibria have been are obtained and their local stability conditions are established. Using Sotomayor's theorem, the conditions of local saddle-node and transcritical and pitchfork bifurcation are derived and drawn. Numerical simulations are performed to clarify the analytical results
In this paper, a mathematical model consisting of the prey- predator model with treatment and disease infection in prey population is proposed and analyzed. The existence, uniqueness and boundedness of the solution are discussed. The stability analyses of all possible equilibrium points are studied. Numerical simulation is carried out to investigate the global dynamical behavior of the system.
An ecological model consisting of prey-predator system involving the prey’s fear is proposed and studied. It is assumed that the predator species consumed the prey according to prey square root type of functional response. The existence, uniqueness and boundedness of the solution are examined. All the possible equilibrium points are determined. The stability analysis of these points is investigated along with the persistence of the system. The local bifurcation analysis is carried out. Finally, this paper is ended with a numerical simulation to understand the global dynamics of the system.
In this paper an eco-epidemiological system has been proposed and studied analytically as well as numerically. The boundedness, existence and uniqueness of the solution are discussed. The local and global stability of all possible equilibrium point are investigated. The global dynamics is studied numerically. It is obtained that system has rich in dynamics including Hopf bifurcation.
In this paper, the effects of prey’s fear on the dynamics of the prey, predator, and scavenger system incorporating a prey refuge with the linear type of functional response were studied theoretically as well as numerically approach. The local and global stabilities of all possible equilibrium points are investigated. The persistence conditions of the model are established. the local bifurcation analysis around the equilibrium points, as well as the Hopf bifurcation near the positive equilibrium point, are discussed and analyzed. Finally, numerical simulations are carried out, and the obtained trajectories are drowned using the application of Matlab version (6) to explain our found analytical
... Show MoreA mathematical eco-epidemiological model consisting of harvested prey–predator system involving fear and disease in the prey population is formulated and studied. The prey population is supposed to be separated into two groups: susceptible and infected. The susceptible prey grows logistically, whereas the infected prey cannot reproduce and instead competes for the environment’s carrying capacity. Furthermore, the disease is transferred through contact from infected to susceptible individuals, and there is no inherited transmission. The existence, positivity, and boundedness of the model’s solution are discussed. The local stability analysis is carried out. The persistence requirements are established. The global behavior of th
... Show MoreStart your abstract here the objective of this paper is to study the dynamical behaviour of an eco-epidemiological system. A prey-predator model involving infectious disease with refuge for prey population only, the (SI_) infectious disease is transmitted directly, within the prey species from external sources of the environment as well as, through direct contact between susceptible and infected individuals. Linear type of incidence rate is used to describe the transmission of infectious disease. While Holling type II of functional responses are adopted to describe the predation process of the susceptible and infected predator respectively. This model is represented mathematically by