In this paper, an ecological model with stage-structure in prey population, fear, anti-predator and harvesting are suggested. Lotka-Volterra and Holling type II functional responses have been assumed to describe the feeding processes . The local and global stability of steady points of this model are established. Finally, the global dynamics are studied numerically to investigate the influence of the parameters on the solutions of the system, especially the effect of fear and anti-predation.
An ecological model consisting of prey-predator system involving the prey’s fear is proposed and studied. It is assumed that the predator species consumed the prey according to prey square root type of functional response. The existence, uniqueness and boundedness of the solution are examined. All the possible equilibrium points are determined. The stability analysis of these points is investigated along with the persistence of the system. The local bifurcation analysis is carried out. Finally, this paper is ended with a numerical simulation to understand the global dynamics of the system.
In this paper, we investigate the impact of fear on a food chain mathematical model with prey refuge and harvesting. The prey species reproduces by to the law of logistic growth. The model is adapted from version of the Holling type-II prey-first predator and Lotka-Volterra for first predator-second predator model. The conditions, have been examined that assurance the existence of equilibrium points. Uniqueness and boundedness of the solution of the system have been achieve. The local and global dynamical behaviors are discussed and analyzed. In the end, numerical simulations are confirmed the theoretical results that obtained and to display the effectiveness of varying each parameter
A modified Leslie-Gower predator-prey model with fear effect and nonlinear harvesting is developed and investigated in this study. The predator is supposed to feed on the prey using Holling type-II functional response. The goal is to see how fear of predation and presence of harvesting affect the model's dynamics. The system's positivity and boundlessness are demonstrated. All conceivable equilibria's existence and stability requirements are established. All sorts of local bifurcation occurrence conditions are presented. Extensive numerical simulations of the proposed model are shown in form of Phase portraits and direction fields. That is to guarantee the correctness of the theoretical results of the dynamic behavior of the system and t
... Show MoreIn this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect
... Show MoreThis paper is concerned with a Holling-II stage-structured predator-prey system in which predators are divided into an immature and mature predators. The aim is to explore the impact of the prey's fear caused by the dread of mature predators in a prey-predator model including intraspecific competitions and prey shelters. The theoretical study includes the local and global stability analysis for the three equilibrium points of the system and shows the prey's fear may lead to improving the stability at the positive equilibrium point. A numerical analysis is given to ensure the accuracy of the theoretical outcomes and to testify the conditions of stability of the system near the non-trivial equilibrium points.
In this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynami
... Show MoreA prey-predator model with Michael Mentence type of predator harvesting and infectious disease in prey is studied. The existence, uniqueness and boundedness of the solution of the model are investigated. The dynamical behavior of the system is studied locally as well as globally. The persistence conditions of the system are established. Local bifurcation near each of the equilibrium points is investigated. Finally, numerical simulations are given to show our obtained analytical results.
In this paper an eco-epidemiological system has been proposed and studied analytically as well as numerically. The boundedness, existence and uniqueness of the solution are discussed. The local and global stability of all possible equilibrium point are investigated. The global dynamics is studied numerically. It is obtained that system has rich in dynamics including Hopf bifurcation.
This paper presents a novel idea as it investigates the rescue effect of the prey with fluctuation effect for the first time to propose a modified predator-prey model that forms a non-autonomous model. However, the approximation method is utilized to convert the non-autonomous model to an autonomous one by simplifying the mathematical analysis and following the dynamical behaviors. Some theoretical properties of the proposed autonomous model like the boundedness, stability, and Kolmogorov conditions are studied. This paper's analytical results demonstrate that the dynamic behaviors are globally stable and that the rescue effect improves the likelihood of coexistence compared to when there is no rescue impact. Furthermore, numerical simul
... Show More