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In this paper, the dynamic behaviour of the stage-structure prey-predator fractional-order derivative system is considered and
discussed. In this model, the Crowley–Martin functional response describes the interaction betweenmature preys with a predator.
 e existence, uniqueness, non-negativity, and the boundedness of solutions are proved. All possible equilibrium points of this
system are investigated. e su�cient conditions of local stability of equilibrium points for the considered system are determined.
Finally, numerical simulation results are carried out to con�rm the theoretical results.

1. Introduction

 e subject of fractional integral and derivative is as old as
classical calculus.  is type of calculus is more compre-
hensive than the di�er-integral calculus due to its worldwide
applications in biology as well as in di�erent branches of
science, engineering, several ecological models, and some
other interdisciplinary �elds [1–4]. Many researchers have
performed and investigated models of fractional derivatives
[5, 6]. Some types of fractional derivatives like Caputo,
Caputo–Fabrizio, Riemann–Liouville, and Marchand are
powerful mathematical tools for modelling biological sys-
tems which cannot be designed by integer derivatives be-
cause fractional-order derivatives are not only dependent on
the initial conditions but also on the memory of the system
[7, 8].  e Lotka–Volterra equations are the �rst equations
that described the dynamics of biological systems, which are
also called the predator-prey equations. A stage-structured
predator-prey model is considered and elucidated by the
authors in Reference [9]. Some authors [10–16] have studied
two species models with stages structured in the predators.
 ey discussed and investigated the stability of the all
equilibrium points as well as the dynamic behaviour of their
systems. In recent years, the global and local dynamics
behaviour of a stage-structured predator-prey model is

investigated, and the optimal control of harvesting is dis-
cussed in References [17–20].  e predator-prey functional
response is very important to determine the relationship
between the predator and prey for that there are many types
of functional responses, namely, Holling types I, II, III, and
IV; Michaelis–Menten ratio-dependent type; and Bed-
dington–DeAngelis type of them have been considered and
analysed in References [21–27].  e Crowley–Martin
functional response is simpli�ed to Michaelis–Menten
which has involved one more term explaining mutual in-
terferences of predators for the case where the predator
feeding rate is decreased by a higher predator density even
when the prey density is high [28, 29].  e subject of the
optimal harvesting is very important in managing the re-
newable resources due to the economic aspect and to keep
population at level far from the extinct, so that many re-
searchers and authors have widely investigated and studied
this subject in their works, see [30–34] and the references
therein.

In this work, we have considered and developed a
fractional-order with the Caputo fractional derivative model
for a stage-structured prey-predator model with Crowl-
ey–Martin functional response and linear harvesting for
mature prey species only.  e current paper is divided as
followsSection 2 contains the main de�nitions of fractional
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derivatives and theories for the local stability of the equi-
librium points that are used throughout this work. In Section
3, the model is formulated with the existence of all its
equilibria. +e existence and boundedness of its solution are
proved and shown. In Section 4, the conditions for the local
stability of all equilibrium points are established. Section 5
presents and confirms the numerical simulation for the
theoretical results, while the conclusions and discussions are
given and elucidated in Section 6.

2. Main Concepts

Definition 1 (see [35, 36]). +e fractional-order derivatives
in the meaning of Caputo are defined as follows:

D
q
t f(t) � I

n− q
f

n
(t), q> 0, (1)

where n is the least integer which is not less than
q, Imis the Riemann–Liouville operator of order m which is
given by:

I
m

�
1
Γ

(m) 􏽚
t

0
(t − τ)

m− 1dτ, (2)

m> 0, Γ(m) is a gamma function.
Some results for the fractional-order derivatives are

found in References [21, 25, 37] that are needed throughout
this paper.

Lemma 1. Assume that f(t) ∈ C[a, b].

(1) D
q
af(t) ∈ (a, b]with0< q≤ 1, then, f(t) �

f(a) + 1/Γ(q)(D
q
af)(ζ)(t − a)q.

where a≤ ζ ≤ sfor alls ∈ (a, b]

(2) If D
q
t f(t) ∈ C(a, b)with 0< q≤ 1, then we have:

(i) If D
q
af(t)≥ 0, for all t ∈ (a, b),

thenf(t) is a nondecreasing function for all
t ∈ [a, b].

(ii) If D
q
af(t)≤ 0for allt ∈ (a, b) then

f(t) is a nonincreasing function for all t ∈ [a, b].

Lemma 2. Assume the Cauchy problem.

D
q
ah(t) � λh(t) + f(t), h(a) � b(b ∈ R), (3)

with0< q≤ 1 and λ ∈ R, then the solution of (4) is given by

h(t) � bEq λ(t − a)
q

􏼂 􏼃

+ 􏽚
t

a
(t − c)

q− 1
Eq,q λ(t − c)

q
f(c)dc􏼂 􏼃.

(4)

In the autonomous case:

D
q
ah(t) � λh(t), h(a) � b(b ∈ R). (5)

.en, the solution is h(t) � bEq[λ(t − a)q] and Eq is the

Mittag-Leffler function.

Lemma 3 (see [21]). Let w(t) be a continuous function on
[t0,∞) and satisfies

D
q
aw(t)≤ − λw(t) + μ, then the form of the solution of

this equation is given by:

w(t)≤ wt0
−
μ
λ

􏼒 􏼓Eq − λ t − t0( 􏼁
q

􏼂 􏼃 +
μ
λ
, (6)

where 0< q< 1,(λ, μ) ∈ R2, λ≠ 0, and t0 ≥ 0 and t0 is the
initial time.

The next lemma is found in Reference [38] which gives
the uniqueness of the solution of fractional-order system.

Lemma 4. LetD
q
t u(t) � f(t, u), t> t0 be a system fractional-

q-order derivatives with the initial condition ut0
,where

0< q≤ 1, f: [t0,∞) × Ω⟶ Rn. .en, the above system has
a unique solution on [t0,∞) × Ω if f(t, u) satisfies the locally
Lipchitz condition concerning u.

To examine the stability of the fractional-order system,
we need the following.

Definition 2 (see [39]). Let f(x) � xn + vn− 1x
n− 1 + vn− 2x

n− 2

+ . . . . . . + v0 be a polynomial of degree n, then the dis-
criminant of f(x) denoted by D(f) is defined by D(f) �

(− 1)n(n− 1)/2R(f, f′), where f′ is the derivative of f and
g(x) � xn + kn− 1x

l− 1 + kn− 2x
l− 2 + . . . . . . + k0 and R(f, g)

are (n + l)⊗ (n + l) determinants.

Lemma 5 (see [39]). Consider a characteristic polynomial
equation, f(λ) � λn + vn− 1λ

n− 1 + vn− 2λ
n− 2 + . . . . . . .. + v0,

then:

(1) If n � 2, then the conditions for |argλi|> qπ/2,
fori� 1,2 q ∈ (0, 1) are either Routh–Hurwitz con-
ditions or v1 < 0, 4v0 > v21 and

tan− 1

���������

4v0 − v
2
1􏼐 􏼑

v1

􏽶
􏽴􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

>
qπ
2

. (7)

(2) If n � 3, then we have the following cases:

(i) D(f)>0v2>0,v0>0v1v2>v0, then|argλi|>qπ/2,

i +1,2,3forq ∈ (0,1),whereD(f) � 18v2v1v0 +

(v2v1)
2 − 4v0(v2)

3 − 4(v1)
3 − 27(v0)

2

(ii) If D(f) < 0, v2 ≥ 0, v1 ≥ 0, v0 > 0, then|argλi|> qπ/
2i� 1, 2, 3 for q< 2/3.

3. The Fractional-Order Model

In Reference [40], the author considered the following
model:
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d
dT

X1(T)( 􏼁 � RX2(T) − D1X1(T) − BX1(T)

d
dT

X2(T)( 􏼁 � BX1(T) − D2X2(T) − B1X
2
2(T) −

A1X2(T)Y2(T)

1 + αX2(T)( 􏼁 1 + βY2(T)( 􏼁

d
dT

Y1(T)( 􏼁 �
A2X2(T)Y2(T)

1 + αX2(T)( 􏼁 1 + βY2(T)( 􏼁
− D3Y1(T) − H1Y1(T)

d
dT

Y2(T)( 􏼁 � H1Y1(T) − D4Y1(T) − B2Y
2
2(T).

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

X1(T), X2(T) are the densities of immature and mature
prey species, respectively. Y1(T)andY2(T) represent the
densities of immature and mature predator species re-
spectively. +e parameter R is the birth rate of immature
prey; B and H1 indicate maturity rate of immature prey and
immature predator, respectively; B1 and B2 express the
competition rate between a mature prey population and
mature predator population, respectively; D1, D2, D3, D4 are
the death rates of immature and mature prey, the death rates
of immature and mature predators, respectively. A1 is the
maximum value which per capita reduction rate of the

mature prey can attain, while A2 is the predator conversation
rate. α and β are measures of the half-saturation of prey
species and the coefficient of interference among predators
at a high density of mature prey, respectively. All that pa-
rameters are positive.

In this work, the system (8) is modified and then
fractional order derivative is introduced in the modified
system with the Caputo-type derivative. We also consider
the harvesting in the mature prey only. +e modified system
is given as follows:

d
dT

X1(T)( 􏼁 � RX2(T) − D1X1(T) − BX1(T)

d
dT

X2(T)( 􏼁 � BX1(T) − D2X2(T) −
A1X2(T)X3(T)

1 + αX2(T)( 􏼁 1 + βX3(T)( 􏼁
− HX2(T)

d

dT
X3(T)( 􏼁 �

A2X2(T)X3(T)

1 + αX2(T)( 􏼁 1 + βX3(T)( 􏼁
− D3X3(T)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

+e parameter H denotes the harvesting rate of mature
prey species. Next, we reduce the parameters of the modified
system (9) by using the following nondimensional
transformation:

x1 �
BX1

RD2
, x2 � αX2, x3 � βX3, t � D1T. (10)

+erefore, we obtain a new system which has the fol-
lowing form:

d
dt

x1(t)( 􏼁 � rx2(t) − (1 + b)x1(t)

d
dt

x2(t)( 􏼁 � d1x1(t) − d2x2(t) −
a1x2(t)x3(t)

1 + x2(t)( 􏼁 1 + x3(t)( 􏼁

d
dt

x3(t)( 􏼁 �
a2x2(t)x3(t)

1 + x2(t)( 􏼁 1 + x3(t)( 􏼁
− d3x3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

where
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r �
B

αD2D1
, b �

B

D1
, d1 �

RD2α
D1

, d2 �
D2

D1
, a1 �

A1

D1β
,

d3 �
D3

D1
, a2 �

A2

D1α
.

(12)

Now, we present the fractional-order derivatives q in
model (3) with the Caputo-type derivatives and then the
system (11) will be as follows:

D
q
t x1(t)( 􏼁 � rx2(t) − (1 + b)x1(t)

D
q
t x2(t)( 􏼁 � d1x1(t) − d2x2(t) −

a1x2(t)x3(t)

1 + x2(t)( 􏼁 1 + x3(t)( 􏼁
− hx2(t)

D
q
t x3(t)( 􏼁 �

a2x2(t)x3(t)

1 + x2(t)( 􏼁 1 + x3(t)( 􏼁
− d3x3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

With x1(t)≥ 0, x2(t)≥ 0, x3(t)≥ 0.
+e following theorem gives the boundedness and non-

negativity of the solution of the system (13).

Theorem 1. For the fractional-order system (13), we have the
following:

(1) All solutions that start in F+ � (x1, x2, x3) ∈􏼈

R3|x1 ≥ 0, x2 ≥ 0, x3 ≥ 0} are non-negative solutions.
(2) If 1 + b> rd1/d2, then all solutions that start in F+ are

bounded.

Proof.

(1) To prove the solution of the fractional-order system
(13) is nonnegative, we start with x1(0)> 0fort � 0
assuming that x1(t)≥ 0, fort≥ 0 is not true; there-
fore, there exists t∗ > 0 such that

x1(t)> 0, 0≤ t< t∗

x1(t) � 0, t � t∗

x1(t)< 0, t> t∗

⎫⎪⎪⎬

⎪⎪⎭
. (14)

So, from the first equation of the system (13), we
obtain the following:

D
q
t x1(t)|t�t∗

� 0. (15)

According to part (1) of Lemma 1, we get x1(t+
∗) � 0

and this is contradiction because x1(t+
∗)< 0, that is

x1(t)< 0, t> t∗.
+erefore, x1(t)≥ 0, for allt≥ 0. In the same manner,
we can prove that x2(t)≥ 0, x3(t)≥ 0, for allt≥ 0.

(2) Let F+ � (x1, x2, x3) ∈ R3|x1 ≥ 0, x2 ≥ 0, x3 ≥ 0􏼈 􏼉, and
x1, x2, and x3 in R3, define a function Vt �

x1(t) + r/d2x2(t) + ra1/d2a2ra1/d2a2x3(t), it fol-
lows that

D
q
V(t) � D

q
x1(t) +

r

d2
D

q
x2(t) +

ra1

d2a2
D

q
x3(t)

� rx2 − (1 + b)x1

+
r

d2
d1x1 − d2 + h( 􏼁x2 −

a1x2x3

1 + x2( 􏼁 1 + x3( 􏼁
􏼠 􏼡

+
ra1

d2a2

a2x2x3

1 + x2( 􏼁 1 + x3( 􏼁
− d3x3􏼠 􏼡,

�
rd1

d2
− (1 + b)􏼠 􏼡x1 −

r

d2
(h)x2 −

ra1

d2a2
d3( 􏼁x3.

(16)

Now, for each k> 0, we have

D
q
V(t) + kV(t) �

rd1
d2

− (1+ b)􏼠 􏼡x1 −
r

d2
(h)x2

−
ra1

d2a2
d3( 􏼁x3 + kx1 + k

r

d2
x2 + k

ra1

d2a2
x3

� k − 1+ b −
rd1
d2

􏼠 􏼡x1􏼠 􏼡 +
r

d2
(k − h)x2

+
ra1

d2a2
k − d3( 􏼁x3.

(17)

If we choose k<min 1 + b − rd1/d2, h, d3􏼈 􏼉, then we
get DqV(t) + kV(t)≤ ε for some ε> 0.

+en, from Lemma 3, we obtain that V(t) ≤ (V(0)−

(ε/k))Eq[− k(t − 0)q] + v/K. +erefore, we have 0≤V(t)≤
ε/k as t⟶∞ and all solutions of system (13) are bounded.

+e next theorem gives the existence and uniqueness of
the solution system (13). □
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Theorem 2. .e existence and uniqueness solution of system
(4) are given for each non-negative initial condition:

Proof. Let the region be defined by F× (0, T], T<∞.
Where F � (x1, x2, x3) ∈ R3

+: max(|x1|, |x2|, |x3|)≤M.
We assume that X � (x1, x2, x3),

_X � ( _x1, _x2, _x3) and
B(X) � (B1(X), B2(X), B3(X)) be a mapping, such that

B1(X) � rx2 − (1 + b)x1,

B2(X) � d1x1 − d2 + h( 􏼁x2 −
a1x2x3

1 + x2( 􏼁 1 + x3( 􏼁
,

B3(X) �
a2x2x3

1 + x2( 􏼁 1 + x3( 􏼁
− d3x3.

(18)

For X, _X∈ F, one can get the following:

B(X) − B( _X) � B1(X) − B1(
_X)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + B2(X) − B2(

_X)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + B3(X) − B3(
_X)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� r x2 − _x2( 􏼁 − (1 + b) x1 − _x1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ d1 x1 − _x1( 􏼁 − d2 + h( 􏼁 x2 − _x2( 􏼁 − a1
x2x3 1 + _x2( 􏼁 1 + _x3( 􏼁 − _x2 _x3 1 + x2( 􏼁 1 + x3( 􏼁

1 + x2( 􏼁 1 + x3( 􏼁 1 + _x2( 􏼁 1 + _x3( 􏼁
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ − d3 x3 − _x3( 􏼁 + a2
x2x3 1 + _x2( 􏼁 1 + _x3( 􏼁 − _x2 _x3 1 + x2( 􏼁 1 + x3( 􏼁

1 + x2( 􏼁 1 + x3( 􏼁 1 + _x2( 􏼁 1 + _x3( 􏼁
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(19)

Since 1/(1 + x2)(1 + x3)(1 + _x2)(1+ _x3)≤ 1,max(|x1|,

|x2|, |x3|)≤M, we have.
Where L �max 1+ b + d1,(r + d2 + h + a1 + a2)(M(1+􏼈

M)), (d3 + (a1 + a2)M(1+ M))}. +erefore, B(X) satisfies
the Lipchitz condition, so that the system (4) has a unique
solution. □

4. Local Stability Analysis

In this section, we investigate the existence of the equilib-
rium points of the system (4).We also give the conditions for
the local stability of its equilibria.

Theorem 3 (see [41, 42]). Consider the following fractional-
order differential system:

D
q
t (x(t)

���→
) � f

→
( x

→
). (20)

x(0)
����→

� x0
�→, q ∈ (0, 1), and x

→∈ Rn. .e point x
∗�→

that

satisfies f
→

(x
∗�→

) � 0 is called the equilibrium point of the
system (20). It is called locally asymptotically stable if
|arg(λi)|> qπ/2 for i � 1, 2, . . . ..n, where λi are the eigen-

values of the Jacobian matrix which are evaluated at x
∗�→
.

Otherwise, it is called an unstable point.
To find all possible equilibrium points of the system (4), we

have to solve the following equations:

D
q
t x1(t) � 0,

D
q
t x2(t) � 0,

D
q
t x3(t) � 0.

(21)

.erefore, the system (4) has three possible equilibrium
points, namely:

(1) .e trivial equilibrium point e0 � (0, 0, 0) always
exists.

(2) .e free predator point e1 � (x∗1 , x∗2 , 0) exists if

x
∗
2 �

1 + b

r
􏼠 􏼡x

∗
1 , r �

d2 + h + d2b + hb

d1
. (22)

(3) .e interior equilibrium pointe2 � (x∗3 , x∗3 , x∗3 ) exists
only if

d1r

1 + b
> d2 + h,

a1x
∗
3

1 + x
∗
3( 􏼁 d1r/1 + b − d2 − h( 􏼁

> 1. (23)

where x∗2 � a1x
∗
3 /(1 + x∗3 )((d1r/1 + b) − d2 − h) − 1,

x∗1 � ((r/1 + b)x∗2 , x∗3 is the positive root of the fol-
lowing equation:

x
∗
2 + ax

∗
2 + b1 � 0. (24)

Here, a � a1d3 − a1a2 + a2(d1r/1 + b–d2 − h)/a1d3
and b1 � a2(d1r/1 + b − d2 − h)/a1d3.
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Since b1 > 0if a< 0 then, equation (24) may have two
positive real roots.

.e Jacobian matrix of fractional-order system (4) as-
sociated with arbitrary fixed point (x1, x2, x3) is given by

J x1, x2, x3( 􏼁 �

− (1 + b) r 0

d1 − d2 + h( 􏼁 −
a1x3

1 + x3( 􏼁 1 + x2( 􏼁
2

− a1x2

1 + x3( 􏼁 1 + x2( 􏼁
2

0
a2x3

1 + x3( 􏼁 1 + x2( 􏼁
2

a2x2

1 + x2( 􏼁 1 + x3( 􏼁
2 − d3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

So, the general characteristic equation of (25) is as follows:

f(λ) � λ3 + p2λ
2

+ p1λ + p0 � 0. (26)

where

p2 � 1 + b + d2 + h +
a1x3

1 + x3( 􏼁 1 + x2( 􏼁
2

⎛⎝ ⎞⎠ −
a2x2

1 + x2( 􏼁 1 + x3( 􏼁
2 − d3

⎛⎝ ⎞⎠, (27)

p1 �
a1a2x3x2

1 + x2( 􏼁
3 1 + x3( 􏼁

3 − rd1 − d2 + h +
a1x3

1 + x3( 􏼁 1 + x2( 􏼁
2

⎛⎝ ⎞⎠
a2x2

1 + x2( 􏼁 1 + x3( 􏼁
2 − d3

⎛⎝ ⎞⎠

− (1 + b) d2 + h +
a1x3

1 + x3( 􏼁 1 + x2( 􏼁
2

⎛⎝ ⎞⎠ +
a2x2

1 + x2( 􏼁 1 + x3( 􏼁
2 − d3

⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

p0 � (1 + b)
a1x2

1 + x2( 􏼁 1 + x3( 􏼁
2

⎛⎝ ⎞⎠
a2x3

1 + x3( 􏼁 1 + x2( 􏼁
2

⎛⎝ ⎞⎠ + rd1
a2x2

1 + x2( 􏼁 1 + x3( 􏼁
2 − d3

⎛⎝ ⎞⎠

− (1 + b) d2 + h +
a1x3

1 + x3( 􏼁 1 + x2( 􏼁
2

⎛⎝ ⎞⎠
a2x2

1 + x2( 􏼁 1 + x3( 􏼁
2 − d3

⎛⎝ ⎞⎠.

(28)

To analyse the local stability of the fixed points e0, e1, e2,
we give the following theorem.

Theorem 4. For the system (4), we have the following:

(1) If d2 + h + bd2 + bh> rd1, then the point e0 is a locally
stable point.

(2) .e free predator point e1 is always an unstable
point.

(3) .e interior equilibrium pointe2 is locally asymp-
totically stable if one of the following conditions
hold.

(i) If D(f) > 0, p2 > 0, p0 > 0 and
p1p2 >p0for q ∈ (0, 1).

(ii) If D(f)< 0, p2 ≥ 0, p1 ≥ 0, p0 > 0 for q< 2/3,
where p2, p1, and p0 are defined in equation(29).

Proof. (1) For the point e0, the Jacobian matrix J(e0) is
given as follows:

J e0( 􏼁 �

− (1 + b) r 0

d1 − d2 + h( 􏼁 0

0 0 − d3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (29)

So, the characteristic equation is P(λ) �

(− d3 − λ)(λ2 + u1λ + u0).
Where u1 � (1 + b + d2 + h) and u0 � (d2 + h+

bd2 + bh − rd1). +e roots of the above characteristic
equation are λ1 � (− d3). It is clear that |argλ1| �

π > qπ/2.
Since u1 > 0 and if d2 + h + bd2 + bh> rd1 that means
u0 > 0, then the Routh–Hurwitz conditions are
satisfied.
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According to part 1 of Lemma 5, e0 is stable. (2) It is clear that the Jacobian matrix J(e1) is as follows:

J e1( 􏼁 �

− (1 + b),
d2 + h + d2b + hb

d1
, 0,

d1, − d2 + h( 􏼁,
− a1(1 + b/r)x

∗
1

1 +(1 + b/r)x
∗
1( 􏼁

,

0, 0,
a2(1 + b/r)x

∗
1

1 +(1 + b/r)x
∗
1( 􏼁

− d3.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

And the corresponding characteristic equation is as
follows:

P(λ) �
a2((1 + b/r))x

∗
1

1 +((1 + b/r))x
∗
1( 􏼁

− d3 − λ􏼠 􏼡

· λ λ + 1 + b + d2 + h( 􏼁 � 0.

(31)

+erefore, one of the eigenvalues is equal to zero.
+us, the free predator pointe1 is unstable.

(3) +e Jacobian matrix at the interior
equilibriumpointe2 is given as follows:

J e2( 􏼁 �

− (1 + b) r 0

d1 − d2 + h( 􏼁 −
a1x
∗
3

1 + x
∗
2( 􏼁 1 + x

∗
3( 􏼁

2
− a1x
∗
2

1 + x
∗
2( 􏼁 1 + x

∗
3( 􏼁

2

0
a2x
∗
3

1 + x
∗
2( 􏼁 1 + x

∗
3( 􏼁

2
a2x
∗
2

1 + x
∗
2( 􏼁 1 + x

∗
3( 􏼁

2 − d3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

So, the characteristic polynomial of J(e2) can be
obtained:

f(λ) � λ3 + p2λ
2

+ p1λ + p0, (33)

where

p2 � 1 + b + d2 + h +
a1x
∗
3

1 + x
∗
3( 􏼁 1 + x

∗
2( 􏼁

2
⎛⎝ ⎞⎠ + d3 −

a2x
∗
3

1 + x
∗
2( 􏼁 1 + x

∗
3( 􏼁

2
⎛⎝ ⎞⎠,

p1 �
a1a2x

∗
3x
∗
2

1 + x
∗
3( 􏼁

3 1 + x
∗
3( 􏼁

3 − rd1 − d2 + h +
a1x
∗
3

1 + x
∗
3( 􏼁 1 + x

∗
2( 􏼁

2
⎛⎝ ⎞⎠

a2x
∗
2

1 + x
∗
2( 􏼁 1 + x

∗
3( 􏼁

2 − d3
⎛⎝ ⎞⎠

+(1 + b) d2 + h +
a1x
∗
3

1 + x
∗
3( 􏼁 1 + x

∗
2( 􏼁

2 + d3 −
a2x
∗
2

1 + x
∗
2( 􏼁 1 + x

∗
3( 􏼁

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

p0 � (1 + b)
a1x
∗
3

1 + x
∗
2( 􏼁 1 + x

∗
3( 􏼁

2
⎛⎝ ⎞⎠

a2x
∗
3

1 + x
∗
3( 􏼁 1 + x

∗
3( 􏼁

2
⎛⎝ ⎞⎠ + rd1

a2x
∗
3

1 + x
∗
3( 􏼁 1 + x

∗
3( 􏼁

2 − d3
⎛⎝ ⎞⎠

− (1 + b) d2 + h +
a1x
∗
3

1 + x
∗
3( 􏼁 1 + x

∗
2( 􏼁

2
⎛⎝ ⎞⎠

a2x
∗
2

1 + x
∗
2( 􏼁 1 + x

∗
3( 􏼁

2 − d3
⎛⎝ ⎞⎠.

(34)
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Figure 1: Shows the local stability of the equilibrium point e0 at which x (t) represents immature prey species, y (t) represents mature prey
species, and z (t) represents predator species.+e values in Table 1 are used with different values of fractional-order(a) q � 1, (b) q � 0.98, (c)
q � 0.88, and (d) q � 0.78.

Table 1: Parameter values of the equilibrium point e0.

Parameter Parameter value
d1 0.1
b 0.2825
h 0.1
d3 0.5133
r 6.2416
a2 0.5851
d2 0.9872
a1 0.6621
q 1,0.98, 0.88, 0.78
x1(0) 0.4175
x2(0) 1.9799
x3(0) 0.837
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Table 2: Parameter values of the equilibrium point e2.

Parameter Parameter value
d1 0.3299
b 0.2825
h 0.6168
d3 0.5133
r 6.2416
a2 0.5851
d2 0.9872
a1 0.6621
q 1, 0.98, 0.88, 0.78
x1(0) 41.6
x2(0) 8
x3(0) 0.2
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Figure 2: Shows the local stability of the equilibrium point e3 at which x (t) represents immature prey species, y (t) represents mature prey
species, and z (t) represents predator species.+e values in Table 2 are used with different values of fractional-order(a) q � 1, (b) q � 0.98, (c)
q � 0.88, and (d) q � 0.78.
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+en, the discriminant D(f) of the cubic polynomial
f(λ) is the following:

D(f) � −

1 p2 p1

0 1 p2

3 2p2 p1

p0 0

p1 p0

0 0
0

0

3

0

2p2

3

p1

2p2

0

p1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 18p2p1p0 + p2p1( 􏼁
2

− 4p0 p2( 􏼁
3

− 4 p1( 􏼁
3

− 27 p0( 􏼁
2
.

(35)

According to Lemma 5 (2), ifD(f)> 0, p2 > 0, p0 > 0 and
p1p2 >p0for q ∈ (0, 1), or D(f) < 0, p2 ≥ 0, p1 ≥ 0, p0 > 0 for
q< 2/3.

+en, the interior fixed point e2 is locally asymptotically
stable. □

5. Numerical Simulations

In this section, we give numerical simulations to confirm the
theoretical results that are employed in Section 4. For the
equilibrium point e0, the parameter values in Table 1 are
considered to carry out that e0 is locally asymptotically
stable. Figure 1 shows that e0 is locally stable according to
conditions in +eorem 4.

For the equilibrium point e2, the values of parameter are
chosen and set in Table 2. According to the conditions in
+eorem 4, the point e2 is locally stable. Figure 2 illustrates
the stability of the positive equilibrium point e2.

6. Conclusions

+e fractional-order differential system has been successfully
applied in mathematical biology. In this paper, we have
discussed the dynamical behaviour of a stage-structure prey-
predator with Crowley–Martian functional response and a
linear harvesting rate in a fractional-order state. +e exis-
tences, uniqueness, non-negativity, and the boundedness
solutions of the fractional-order system are presented and
proved. It is found that the considered system has at least
three equilibrium points. One of them are unstable points.
For the other points, conditions are set to guarantee their
local stability.
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