It is proposed and studied a prey-predator system with a Holling type II functional response that merges predation fear with a predator-dependent prey's refuge. Understanding the impact of fear and refuge on the system's dynamic behavior is one of the objectives. All conceivable steady-states are investigated for their stability. The persistence condition of the system has been established. Local bifurcation analysis is performed in the Sotomayor sense. Extensive numerical simulation with varied parameters was used to explore the system's global dynamics. A limit cycle and a point attractor are the two types of attractors in the system. It's also interesting to note that the system exhibits bi-stability between these 2 types of attractors. Fear also has a destabilizing effect on the dynamics of the system.
The dynamical behavior of a two-dimensional continuous time dynamical system describing by a prey predator model is investigated. By means of constructing suitable Lyapunov functional, sufficient condition is derived for the global asymptotic stability of the positive equilibrium of the system. The Hopf bifurcation analysis is carried out. The numerical simulations are used to study the effect of periodic forcing in two different parameters. The results of simulations show that the model under the effects of periodic forcing in two different parameters, with or without phase difference, could exhibit chaotic dynamics for realistic and biologically feasible parametric values.
In this paper, we establish the conditions of the occurrence of the local bifurcations, such as saddle node, transcritical and pitchfork, of all equilibrium points of an eco-epidemiological model consisting of a prey-predator model with SI (susceptible-infected) epidemic diseases in prey population only and a refuge-stage structure in the predators. It is observed that there is a transcritical bifurcation near the axial and free predator equilibrium points, near disease-free equilibrium point is a saddle-node bifurcation and near positive (coexistence) equilibrium point is a saddle-node bifurcation, a transcritical bifurcation and a pitchfork bifurcation. Further investigations for Hopf bifurcation near coexistence equilibrium point
... Show MoreIn this paper, we establish the conditions of the occurrence of the local bifurcations, such as saddle node, transcritical and pitchfork, of all equilibrium points of an eco-epidemiological model consisting of a prey-predator model with SI (susceptible-infected) epidemic diseases in prey population only and a refuge-stage structure in the predators. It is observed that there is a transcritical bifurcation near the axial and free predator equilibrium points, near disease-free equilibrium point is a saddle-node bifurcation and near positive (coexistence) equilibrium point is a saddle-node bifurcation, a transcritical bifurcation and a pitchfork bifurcation. Further investigations for Hopf bifurcation near coexistence equilibrium point are
... Show MoreThe food web is a crucial conceptual tool for understanding the dynamics of energy transfer in an ecosystem, as well as the feeding relationships among species within a community. It also reveals species interactions and community structure. As a result, an ecological food web system with two predators competing for prey while experiencing fear was developed and studied. The properties of the solution of the system were determined, and all potential equilibrium points were identified. The dynamic behavior in their immediate surroundings was examined both locally and globally. The system’s persistence demands were calculated, and all conceivable forms of local bifurcations were investigated. With the aid of MATLAB, a numerical simu
... Show MoreAn eco-epidemic model is proposed in this paper. It is assumed that there is a stage structure in prey and disease in predator. Existence, uniqueness and bounded-ness of the solution for the system are studied. The existence of each possible steady state points is discussed. The local condition for stability near each steady state point is investigated. Finally, global dynamics of the proposed model is studied numerically.
There are many factors effect on the spread of infectious disease or control it,
some of these factors are (immigration and vaccination). The main objective of this
paper is to study the effect of those factors on the dynamical behavior of an SVIR
model. It is assumed that the disease is spread by contact between members of
populations individuals. While the recovered individuals gain permanent immunity
against the disease. The existence, uniqueness and boundedness of the solution of
this model are investigated. The local and global dynamical behaviors of the model
are studied. The local bifurcations and Hopf bifurcation of the model are
investigated. Finally, in order to confirm our obtained results and specify t
In this paper, a Sokol-Howell prey-predator model involving strong Allee effect is proposed and analyzed. The existence, uniqueness, and boundedness are studied. All the five possible equilibria have been are obtained and their local stability conditions are established. Using Sotomayor's theorem, the conditions of local saddle-node and transcritical and pitchfork bifurcation are derived and drawn. Numerical simulations are performed to clarify the analytical results
In this study, the spreading of the pandemic coronavirus disease (COVID-19) is formulated mathematically. The objective of this study is to stop or slow the spread of COVID-19. In fact, to stop the spread of COVID-19, the vaccine of the disease is needed. However, in the absence of the vaccine, people must have to obey curfew and social distancing and follow the media alert coverage rule. In order to maintain these alternative factors, we must obey the modeling rule. Therefore, the impact of curfew, media alert coverage, and social distance between the individuals on the outbreak of disease is considered. Five ordinary differential equations of the first-order are used to represent the model. The solution properties of the system ar
... Show MoreIn this paper a prey - predator model with harvesting on predator species with infectious disease in prey population only has been proposed and analyzed. Further, in this model, Holling type-IV functional response for the predation of susceptible prey and Lotka-Volterra functional response for the predation of infected prey as well as linear incidence rate for describing the transition of disease are used. Our aim is to study the effect of harvesting and disease on the dynamics of this model.