Preferred Language
Articles
/
GBbUtYkBVTCNdQwCgYzr
Stability and bifurcation of a prey-predator system incorporating fear and refuge

It is proposed and studied a prey-predator system with a Holling type II functional response that merges predation fear with a predator-dependent prey's refuge. Understanding the impact of fear and refuge on the system's dynamic behavior is one of the objectives. All conceivable steady-states are investigated for their stability. The persistence condition of the system has been established. Local bifurcation analysis is performed in the Sotomayor sense. Extensive numerical simulation with varied parameters was used to explore the system's global dynamics. A limit cycle and a point attractor are the two types of attractors in the system. It's also interesting to note that the system exhibits bi-stability between these 2 types of attractors. Fear also has a destabilizing effect on the dynamics of the system.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Feb 13 2024
Journal Name
Iraqi Journal Of Science
Stability and Bifurcation of Epidemic Model

In this paper a mathematical model that describes the flow of infectious disease in a population is proposed and studied. It is assumed that the disease divided the population into four classes: susceptible individuals (S), vaccinated individuals (V), infected individuals (I) and recover individuals (R). The impact of immigrants, vaccine and external sources of disease, on the dynamics of SVIRS epidemic model is studied. The existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of the model is studied. The occurrence of local bifurcation as well as Hopf bifurcation in the model is investigated. Finally the global dynamics of the proposed model is studied numerically.

View Publication Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
THE DYNAMICS OF A STAGE-STRUCTURE PREY-PREDATOR MODEL WITH HUNTING COOPERATION AND ANTI-PREDATOR BEHAVIOR

The mathematical construction of an ecological model with a prey-predator relationship was done. It presumed that the prey consisted of a stage structure of juveniles and adults. While the adult prey species had the power to fight off the predator, the predator, and juvenile prey worked together to hunt them. Additionally, the effect of the harvest was considered on the prey. All the solution’s properties were discussed. All potential equilibrium points' local stability was tested. The prerequisites for persistence were established. Global stability was investigated using Lyapunov methods. It was found that the system underwent a saddle-node bifurcation near the coexistence equilibrium point while exhibiting a transcritical bifurcation

... Show More
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Dynamical Behavior of Two Predators-One Prey Ecological System with Refuge and Beddington –De Angelis Functional Response

     The dynamical behavior of an ecological system of  two predators-one prey updated with incorporating prey refuge and Beddington –De Angelis functional response had been studied in this work, The essential mathematical features of the present model have been studied  thoroughly. The system has local and global stability when certain conditions are met.  had been  proved respectively.  Further, the system has no saddle node bifurcation but transcritical bifurcation and Pitchfork bifurcation are satisfied while the Hopf bifurcation does not occur. Numerical illustrations are performed  to validate the model's applicability under consideration. Finally, the results are included in the form of points in agreement with the obt

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Communications In Mathematical Biology And Neuroscience
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Sep 18 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
Contribution of hunting cooperation and antipredator behavior to the dynamics of the harvested prey-predator system

Fear, harvesting, hunting cooperation, and antipredator behavior are all important subjects in ecology. As a result, a modified Leslie-Gower prey-predator model containing these biological aspects is mathematically constructed, when the predation processes are described using the Beddington-DeAngelis type of functional response. The solution's positivity and boundedness are studied. The qualitative characteristics of the model are explored, including stability, persistence, and bifurcation analysis. To verify the gained theoretical findings and comprehend the consequences of modifying the system's parameters on their dynamical behavior, a detailed numerical investigation is carried out using MATLAB and Mathematica. It is discovered that the

... Show More
Scopus (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Apr 20 2011
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Chaos in a harvested prey-predator model with infectious disease in the prey

A harvested prey-predator model with infectious disease in preyis investigated. It is assumed that the predator feeds on the infected prey only according to Holling type-II functional response. The existence, uniqueness and boundedness of the solution of the model are investigated. The local stability analysis of the harvested prey-predator model is carried out. The necessary and sufficient conditions for the persistence of the model are also obtained. Finally, the global dynamics of this model is investigated analytically as well as numerically. It is observed that, the model have different types of dynamical behaviors including chaos.

View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Applications And Applied Mathematics: An International Journal (aam)
Stability and Bifurcation of a Cholera Epidemic Model with Saturated Recovery Rate

In this paper, a Cholera epidemic model is proposed and studied analytically as well as numerically. It is assumed that the disease is transmitted by contact with Vibrio cholerae and infected person according to dose-response function. However, the saturated treatment function is used to describe the recovery process. Moreover, the vaccine against the disease is assumed to be utterly ineffective. The existence, uniqueness and boundedness of the solution of the proposed model are discussed. All possible equilibrium points and the basic reproduction number are determined. The local stability and persistence conditions are established. Lyapunov method and the second additive compound matrix are used to study the global stability of the system.

... Show More
View Publication
Publication Date
Thu Oct 06 2022
Journal Name
Advances In Systems Science And Applications
Stability and Bifurcation of a Delay Cancer Model in the Polluted Environment

It is well known that the spread of cancer or tumor growth increases in polluted environments. In this paper, the dynamic behavior of the cancer model in the polluted environment is studied taking into consideration the delay in clearance of the environment from their contamination. The set of differential equations that simulates this epidemic model is formulated. The existence, uniqueness, and the bound of the solution are discussed. The local and global stability conditions of disease-free and endemic equilibrium points are investigated. The occurrence of the Hopf bifurcation around the endemic equilibrium point is proved. The stability and direction of the periodic dynamics are studied. Finally, the paper is ended with a numerical simul

... Show More
Scopus (2)
Scopus
View Publication
Publication Date
Tue Mar 14 2023
Journal Name
Iraqi Journal Of Science
On the Dynamics of Prey-Predator Model Involving Treatment and Infections Disease in Prey Population

In this paper, a mathematical model consisting of the prey- predator model with treatment and disease infection in prey population is proposed and analyzed. The existence, uniqueness and boundedness of the solution are discussed. The stability analyses of all possible equilibrium points are studied. Numerical simulation is carried out to investigate the global dynamical behavior of the system.

View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
On The Dynamics of Discrete-Time Prey-Predator System with Ratio-Dependent Functional Response

In this paper, a discrete- time ratio-dependent prey- predator model is proposed and analyzed. All possible fixed points have been obtained. The local stability conditions for these fixed points have been established. The global stability of the proposed system is investigated numerically. Bifurcation diagrams as a function of growth rate of the prey species are drawn. It is observed that the proposed system has rich dynamics including chaos.

View Publication Preview PDF