Preferred Language
Articles
/
WxbztIcBVTCNdQwCCl2W
A reliable iterative method for solving the epidemic model and the prey and predator problems
...Show More Authors

In the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier as in Variational Iteration Method (VIM) and no needs to construct a homotopy as in Homotopy Perturbation Method (HPM). The results obtained are compared with the results by existing methods and prove that the presented method is very effective, simple and does not require any restrictive assumptions for nonlinear terms. The software used for the numerical calculations in this study was MATHEMATICA r 8.0.

Crossref
View Publication
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
A Reliable Iterative Transform Method for Solving an Epidemic Model
...Show More Authors

    The main purpose of the work is to apply a new method, so-called LTAM, which couples the Tamimi and Ansari iterative method (TAM) with the Laplace transform (LT). This method involves solving a problem of non-fatal disease spread in a society that is assumed to have a fixed size during the epidemic period. We apply the method to give an approximate analytic solution to the nonlinear system of the intended model. Moreover, the absolute error resulting from the numerical solutions and the ten iterations of LTAM approximations of the epidemic model, along with the maximum error remainder, were calculated by using MATHEMATICA® 11.3 program to illustrate the effectiveness of the method.

View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Crossref
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Efficient Iterative Methods for Solving the SIR Epidemic Model
...Show More Authors

In this article, the numerical and approximate solutions for the nonlinear differential equation systems, represented by the epidemic SIR model, are determined. The effective iterative methods, namely the Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM), and the Banach contraction method (BCM), are used to obtain the approximate solutions. The results showed many advantages over other iterative methods, such as Adomian decomposition method (ADM) and the variation iteration method (VIM) which were applied to the non-linear terms of the Adomian polynomial and the Lagrange multiplier, respectively. Furthermore, numerical solutions were obtained by using the fourth-orde Runge-Kutta (RK4), where the maximum remaining errors showed th

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Crossref
Publication Date
Sun Jul 04 2021
Journal Name
(al-qadisiyah-journal Of Pure Science(qjps
Reliable Iterative Method for solving Volterra - Fredholm Integro Differential Equations
...Show More Authors

The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.

View Publication
Publication Date
Sun Mar 01 2020
Journal Name
Gazi University Journal Of Science
Reliable Iterative Methods for Solving the Falkner-Skan Equation
...Show More Authors

View Publication
Crossref (6)
Crossref
Publication Date
Sun Sep 01 2019
Journal Name
Gazi University Journal Of Science
Reliable Iterative Methods for Solving Convective Straight and Radial Fins with Temperature-Dependent Thermal Conductivity Problems
...Show More Authors

In our article, three iterative methods are performed to solve the nonlinear differential equations that represent the straight and radial fins affected by thermal conductivity. The iterative methods are the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM) to get the approximate solutions. For comparison purposes, the numerical solutions were further achieved by using the fourth Runge-Kutta (RK4) method, Euler method and previous analytical methods that available in the literature. Moreover, the convergence of the proposed methods was discussed and proved. In addition, the maximum error remainder values are also evaluated which indicates that the propo

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Chaos, Solitons & Fractals
A semi-analytical iterative method for solving nonlinear thin film flow problems
...Show More Authors

View Publication
Crossref (16)
Crossref
Publication Date
Mon Mar 09 2015
Journal Name
Monthly Notices Of The Royal Astronomical Society
A reliable iterative method for solving Volterra integro-differential equations and some applications for the Lane–Emden equations of the first kind
...Show More Authors

View Publication
Crossref (7)
Crossref
Publication Date
Mon Jan 04 2021
Journal Name
Iium Engineering Journal
RELIABLE ITERATIVE METHODS FOR SOLVING 1D, 2D AND 3D FISHER’S EQUATION
...Show More Authors

In the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (H

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sat Jul 01 2017
Journal Name
Journal Of King Saud University - Science
A semi-analytical iterative technique for solving chemistry problems
...Show More Authors

View Publication
Crossref (16)
Crossref
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Stability Analysis of a Prey-Predator Model with Prey Refuge and Fear of Adult Predator
...Show More Authors

     This paper is concerned with a Holling-II stage-structured predator-prey system in which predators are divided into an immature and mature predators. The aim is to explore the impact of the prey's fear caused by the dread of mature predators in a prey-predator model including intraspecific competitions and prey shelters. The theoretical study includes the local and global stability analysis for the three equilibrium points of the system and shows the prey's fear may lead to improving the stability at the positive equilibrium point. A numerical analysis is given to ensure the accuracy of the theoretical outcomes and to testify the conditions of stability of the system near the non-trivial equilibrium points.

View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref