The proposed design of neural network in this article is based on new accurate approach for training by unconstrained optimization, especially update quasi-Newton methods are perhaps the most popular general-purpose algorithms. A limited memory BFGS algorithm is presented for solving large-scale symmetric nonlinear equations, where a line search technique without derivative information is used. On each iteration, the updated approximations of Hessian matrix satisfy the quasi-Newton form, which traditionally served as the basis for quasi-Newton methods. On the basis of the quadratic model used in this article, we add a new update of quasi-Newton form. One innovative features of this form's is its ability to estimate the energy function's or performance function with high order precision with second-order curvature while employ the given function value data and gradient. The global convergence of the proposed algorithm is established under some suitable conditions. Under some hypothesis the approach is established to be globally convergent. The updated approaches can be numerical and more efficient than the existing comparable traditional methods, as illustrated by numerical trials. Numerical results show that the given method is competitive to those of the normal BFGS methods. We show that solving a partial differential equation can be formulated as a multi-objective optimization problem, and use this formulation to propose several modifications to existing methods. Also the proposed algorithm is used to approximate the optimal scaling parameter, which can be used to eliminate the need to optimize this parameter. Our proposed update is tested on a variety of partial differential equations and compared to existing methods. These partial differential equations include the fourth order three dimensions nonlinear equation, which we solve in up to four dimensions, the convection-diffusion equation, all of which show that our proposed update lead to enhanced accuracy.
In this paper, several combination algorithms between Partial Update LMS (PU LMS) methods and previously proposed algorithm (New Variable Length LMS (NVLLMS)) have been developed. Then, the new sets of proposed algorithms were applied to an Acoustic Echo Cancellation system (AEC) in order to decrease the filter coefficients, decrease the convergence time, and enhance its performance in terms of Mean Square Error (MSE) and Echo Return Loss Enhancement (ERLE). These proposed algorithms will use the Echo Return Loss Enhancement (ERLE) to control the operation of filter's coefficient length variation. In addition, the time-varying step size is used.The total number of coefficients required was reduced by about 18% , 10% , 6%
... Show MoreIn this paper, we introduce a class of operators on a Hilbert space namely quasi-posinormal operators that contain properly the classes of normal operator, hyponormal operators, M–hyponormal operators, dominant operators and posinormal operators . We study some basic properties of these operators .Also we are looking at the relationship between invertibility operator and quasi-posinormal operator .
The purpose of this paper is to investigate the concept of relative quasi-invertible submodules motivated by rational submodules and quasi-invertible submodules. We introduce several properties and characterizations to relative quasi-invertiblity. We further investigate conditions under which identification consider between rationality, essentiality and relative quasi-invertiblity. Finally, we consider quasiinvertiblity relative to certain classes of submodules
Frustrated Total Internal Reflection FTIR phenomenon is manifested employing Newton‟s rings setup generated via a coherent light beam of a laser diode ( . All concentric bright and dark rings, except the central bright spot, were noticed to recede (disappear) when the incident angle exceeded the critical angle of 41o.
It was also shown that the current setup has proven its applicability for other tests and can give convenient results that conform with theory. Neither the concept nor the design is beyond what can be realized in an undergraduate laboratory. However, technical improvements in mounting the prism - lens may be advisable. As an extension of the experiments, the effect can be studied using hollow prism filled with liquids
The study presents the modification of the Broyden-Flecher-Goldfarb-Shanno (BFGS) update (H-Version) based on the determinant property of inverse of Hessian matrix (second derivative of the objective function), via updating of the vector s ( the difference between the next solution and the current solution), such that the determinant of the next inverse of Hessian matrix is equal to the determinant of the current inverse of Hessian matrix at every iteration. Moreover, the sequence of inverse of Hessian matrix generated by the method would never approach a near-singular matrix, such that the program would never break before the minimum value of the objective function is obtained. Moreover, the new modification of BFGS update (H-vers
... Show MoreIn this article, we will present a quasi-contraction mapping approach for D iteration, and we will prove that this iteration with modified SP iteration has the same convergence rate. At the other hand, we prove that the D iteration approach for quasi-contraction maps is faster than certain current leading iteration methods such as, Mann and Ishikawa. We are giving a numerical example, too.
In this article, we recalled different types of iterations as Mann, Ishikawa, Noor, CR-iteration and, Modified SP_iteration of quasi δ-contraction mappings, and we proved that all these iterations equivalent to approximate fixed points of δ-contraction mappings in Banach spaces.
Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.
Let Q be a left Module over a ring with identity ℝ. In this paper, we introduced the concept of T-small Quasi-Dedekind Modules as follows, An R-module Q is T-small quasi-Dedekind Module if,
Let M be an R-module, where R be a commutative; ring with identity. In this paper, we defined a new kind of submodules, namely T-small quasi-Dedekind module(T-small Q-D-M) and essential T-small quasi-Dedekind module(ET-small Q-D-M). Let T be a proper submodule of an R-module M, M is called an (T-small Q-D-M) if, for all f ∊ End(M), f ≠ 0, implies