Preferred Language
Articles
/
hxb4BIcBVTCNdQwCJS37
A Computationally Efficient Gradient Algorithm for Downlink Training Sequence Optimization in FDD Massive MIMO Systems
...Show More Authors

Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date very challenging. Although advanced iterative algorithms have been developed to address this challenge, they exhibit slow convergence speed and thus deliver high latency and computational complexity. To overcome this challenge, we propose a computationally efficient conjugate gradient-descent (CGD) algorithm based on the Riemannian manifold in order to optimize the DL training sequence at base station (BS), while improving the convergence rate to provide a fast CSI estimation for an FDD m-MIMO system. To this end, the sum rate and the computational complexity performances of the proposed training solution are compared with the state-of-the-art iterative algorithms. The results show that the proposed training solution maximizes the achievable sum rate performance, while delivering a lower overall computational complexity owing to a faster convergence rate in comparison to the state-of-the-art iterative algorithms.

Scopus Crossref
View Publication
Publication Date
Thu Jun 01 2023
Journal Name
Electronics
Downlink Training Sequence Design Based on Waterfilling Solution for Low-Latency FDD Massive MIMO Communications Systems
...Show More Authors

Future generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Dec 16 2020
Journal Name
Electronics
Downlink Training Design for FDD Massive MIMO Systems in the Presence of Colored Noise
...Show More Authors

Massive multiple-input multiple-output (MaMi) systems have attracted much research attention during the last few years. This is because MaMi systems are able to achieve a remarkable improvement in data rate and thus meet the immensely ongoing traffic demands required by the future wireless networks. To date, the downlink training sequence (DTS) for the frequency division duplex (FDD) MaMi communications systems have been designed based on the idealistic assumption of white noise environments. However, it is essential and more practical to consider the colored noise environments when designing an efficient DTS for channel estimation. To this end, this paper proposes a new DTS design by exploring the joint use of spatial channel and n

... Show More
View Publication
Scopus (14)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Wed Apr 14 2021
Journal Name
Wireless Personal Communications
A Partial CSI Estimation Approach for Downlink FDD massive-MIMO System with Different Base Transceiver Station Topologies
...Show More Authors

Massive multiple-input multiple-output (massive-MIMO) is a promising technology for next generation wireless communications systems due to its capability to increase the data rate and meet the enormous ongoing data traffic explosion. However, in non-reciprocal channels, such as those encountered in frequency division duplex (FDD) systems, channel state information (CSI) estimation using downlink (DL) training sequence is to date very challenging issue, especially when the channel exhibits a shorter coherence time. In particular, the availability of sufficiently accurate CSI at the base transceiver station (BTS) allows an efficient precoding design in the DL transmission to be achieved, and thus, reliable communication systems can be obtaine

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Sum Rate Maximization Versus MSE Minimization in FDD Massive MIMO Systems With Short Coherence Time
...Show More Authors

View Publication
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Thu Sep 22 2016
Journal Name
Applied Sciences
Analysis and Evaluation of Performance Gains and Tradeoffs for Massive MIMO Systems
...Show More Authors

View Publication
Scopus (16)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Fri Dec 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
Performance Analysis for Hybrid Massive MIMO FSO/RF Links Based on Efficient Channel Codes
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Aug 12 2021
Journal Name
Applied System Innovation
The Role of Correlation in the Performance of Massive MIMO Systems
...Show More Authors

Massive multiple-input multiple-output (m-MIMO) is considered as an essential technique to meet the high data rate requirements of future sixth generation (6G) wireless communications networks. The vast majority of m-MIMO research has assumed that the channels are uncorrelated. However, this assumption seems highly idealistic. Therefore, this study investigates the m-MIMO performance when the channels are correlated and the base station employs different antenna array topologies, namely the uniform linear array (ULA) and uniform rectangular array (URA). In addition, this study develops analyses of the mean square error (MSE) and the regularized zero-forcing (RZF) precoder under imperfect channel state information (CSI) and a realist

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Jun 21 2022
Journal Name
Peerj Computer Science
Performance evaluation of frequency division duplex (FDD) massive multiple input multiple output (MIMO) under different correlation models
...Show More Authors

Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
A Descent Modification of Conjugate Gradient Method for Optimization Models
...Show More Authors

In this paper, we suggest a descent modification of the conjugate gradient method which converges globally provided that the exact minimization condition is satisfied. Preliminary numerical experiments on some benchmark problems show that the method is efficient and promising.  

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Fri Dec 08 2023
Journal Name
Iraqi Journal Of Science
A Modified Hestenes-Stiefel Conjugate Gradient Method and its Global convergence for unconstrained optimization
...Show More Authors

In this paper, we proposed a modified Hestenes-Stiefel (HS) conjugate
gradient method. This achieves a high order accuracy in approximating the second
order curvature information of the objective function by utilizing the modified
secant condition which is proposed by Babaie-Kafaki [1], also we derive a nonquadratic
conjugate gradient model. The important property of the suggestion
method that is satisfy the descent property and global convergence independent of
the accuracy of the line search. In addition, we prove the global convergence under
some suitable conditions, and we reported the numerical results under these
conditions.

View Publication Preview PDF