Free Space Optics (FSO) plays a vital role in modern wireless communications due to its advantages over fiber optics and RF techniques where a transmission of huge bandwidth and access to remote places become possible. The specific aim of this research is to analyze the Bit-Error Rate (BER) for FSO communication system when the signal is sent the over medium of turbulence channel, where the fading channel is described by the Gamma-Gamma model. The signal quality is improved by using Optical Space-Time Block- Code (OSTBC) and then the BER will be reduced. Optical 2×2 Alamouti scheme required 14 dB bit energy to noise ratio (Eb/N0) at 10-5 bit error rate (BER) which gives 3.5 dB gain as compared to no diversity scheme. Th
... Show MoreMany studies have been published to address the growing issues in wireless communication systems. Space-Time Block Coding (STBC) is an effective and practical MIMO-OFDM application that can address such issues. It is a powerful tool for increasing wireless performance by coding data symbols and transmitting diversity using several antennas. The most significant challenge is to recover the transmitted signal through a time-varying multipath fading channel and obtain a precise channel estimation to recover the transmitted information symbols. This work considers different pilot patterns for channel estimation and equalization in MIMO-OFDM systems. The pilot patterns fall under two general types: comb and block types, with
... Show MoreFuture wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve
... Show MoreThere has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide very low bit error rates (BER) along with information security. As more and more information is transacted over wireless media, there has been increasing criminal activity directed against such systems. This paper investigates the feasibility of using chaotic communications over Multiple-Input-Multiple-Output (MIMO) channels. We have studied the performance of differential chaos shift keying (DCSK) with 2×2 Alamouti scheme and 2×1 Alamouti scheme for different chaotic maps over additive white Gaussian noise (
... Show MoreThe objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a
... Show MoreFuture generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for
... Show MoreThere has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide low bit error rates (BER) along with information security. The aim of such activity is to steal or distort the information being conveyed. Optical Wireless Systems (basically Free Space Optic Systems, FSO) are no exception to this trend. Thus, there is an urgent necessity to design techniques that can secure privileged information against unauthorized eavesdroppers while simultaneously protecting information against channel-induced perturbations and errors. Conventional cryptographic techniques are not designed
... Show MoreRecently, wireless communication environments with high speeds and low complexity have become increasingly essential. Free-space optics (FSO) has emerged as a promising solution for providing direct connections between devices in such high-spectrum wireless setups. However, FSO communications are susceptible to weather-induced signal fluctuations, leading to fading and signal weakness at the receiver. To mitigate the effects of these challenges, several mathematical models have been proposed to describe the transition from weak to strong atmospheric turbulence, including Rayleigh, lognormal, Málaga, Nakagami-m, K-distribution, Weibull, Negative-Exponential, Inverse-Gaussian, G-G, and Fisher-Snedecor F distributions. This paper extensive
... Show MoreMassive multiple-input multiple-output (m-MIMO) is considered as an essential technique to meet the high data rate requirements of future sixth generation (6G) wireless communications networks. The vast majority of m-MIMO research has assumed that the channels are uncorrelated. However, this assumption seems highly idealistic. Therefore, this study investigates the m-MIMO performance when the channels are correlated and the base station employs different antenna array topologies, namely the uniform linear array (ULA) and uniform rectangular array (URA). In addition, this study develops analyses of the mean square error (MSE) and the regularized zero-forcing (RZF) precoder under imperfect channel state information (CSI) and a realist
... Show More