Massive multiple-input multiple-output (m-MIMO) is considered as an essential technique to meet the high data rate requirements of future sixth generation (6G) wireless communications networks. The vast majority of m-MIMO research has assumed that the channels are uncorrelated. However, this assumption seems highly idealistic. Therefore, this study investigates the m-MIMO performance when the channels are correlated and the base station employs different antenna array topologies, namely the uniform linear array (ULA) and uniform rectangular array (URA). In addition, this study develops analyses of the mean square error (MSE) and the regularized zero-forcing (RZF) precoder under imperfect channel state information (CSI) and a realistic physical channel model. To this end, the MSE minimization and the spectral efficiency (SE) maximization are investigated. The results show that the SE is significantly degraded using the URA topology even when the RZF precoder is used. This is because the level of interference is significantly increased in the highly correlated channels even though the MSE is considerably minimized. This implies that using a URA topology with relatively high channel correlations would not be beneficial to the SE unless an interference management scheme is exploited.
Massive multiple-input multiple-output (MaMi) systems have attracted much research attention during the last few years. This is because MaMi systems are able to achieve a remarkable improvement in data rate and thus meet the immensely ongoing traffic demands required by the future wireless networks. To date, the downlink training sequence (DTS) for the frequency division duplex (FDD) MaMi communications systems have been designed based on the idealistic assumption of white noise environments. However, it is essential and more practical to consider the colored noise environments when designing an efficient DTS for channel estimation. To this end, this paper proposes a new DTS design by exploring the joint use of spatial channel and n
... Show MoreMassive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently
... Show MoreFuture wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve
... Show MoreFuture generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for
... Show MoreThe objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a
... Show MoreThe growing interest in the use of chaotic techniques for enabling secure communication in recent years has been motivated by the emergence of a number of wireless services which require the service provider to provide low bit error rates (BER) along with information security. This paper investigates the feasibility of using chaotic communications over Multiple-Input-Multiple-Output (MIMO) channels. While the use of Chaotic maps can enhance security, it is seen that the overall BER performance gets degraded when compared to conventional communication schemes. In order to overcome this limitation, we have proposed the use of a combination of Chaotic modulation and Alamouti Space Time Block Code. The performance of Chaos Shift Keying (CSK) wi
... Show More