Preferred Language
Articles
/
QBamBYcBVTCNdQwC6S_k
A Partial CSI Estimation Approach for Downlink FDD massive-MIMO System with Different Base Transceiver Station Topologies
...Show More Authors

Massive multiple-input multiple-output (massive-MIMO) is a promising technology for next generation wireless communications systems due to its capability to increase the data rate and meet the enormous ongoing data traffic explosion. However, in non-reciprocal channels, such as those encountered in frequency division duplex (FDD) systems, channel state information (CSI) estimation using downlink (DL) training sequence is to date very challenging issue, especially when the channel exhibits a shorter coherence time. In particular, the availability of sufficiently accurate CSI at the base transceiver station (BTS) allows an efficient precoding design in the DL transmission to be achieved, and thus, reliable communication systems can be obtained. In order to achieve the aforementioned objectives, this paper presents a feasible DL training sequence design based on a partial CSI estimation approach for an FDD massive-MIMO system with a shorter coherence time. To this end, a threshold-based approach is proposed for a suitable DL pilot selection by exploring the statistical information of the channel covariance matrix. The mean square error of the proposed design is derived, and the achievable sum rate and bit-error-rate for maximum ratio transmitter and regularized zero forcing precoding is investigated over different BTS topologies with uniform linear array and uniform rectangular array. The results show that a feasible performance in the DL FDD massive-MIMO systems can be achieved even when a large number of antenna elements are deployed by the BTS and a shorter coherence time is considered.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jun 05 2022
Journal Name
Network
A Computationally Efficient Gradient Algorithm for Downlink Training Sequence Optimization in FDD Massive MIMO Systems
...Show More Authors

Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Dec 16 2020
Journal Name
Electronics
Downlink Training Design for FDD Massive MIMO Systems in the Presence of Colored Noise
...Show More Authors

Massive multiple-input multiple-output (MaMi) systems have attracted much research attention during the last few years. This is because MaMi systems are able to achieve a remarkable improvement in data rate and thus meet the immensely ongoing traffic demands required by the future wireless networks. To date, the downlink training sequence (DTS) for the frequency division duplex (FDD) MaMi communications systems have been designed based on the idealistic assumption of white noise environments. However, it is essential and more practical to consider the colored noise environments when designing an efficient DTS for channel estimation. To this end, this paper proposes a new DTS design by exploring the joint use of spatial channel and n

... Show More
View Publication
Scopus (14)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Electronics
Downlink Training Sequence Design Based on Waterfilling Solution for Low-Latency FDD Massive MIMO Communications Systems
...Show More Authors

Future generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Jun 21 2022
Journal Name
Peerj Computer Science
Performance evaluation of frequency division duplex (FDD) massive multiple input multiple output (MIMO) under different correlation models
...Show More Authors

Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Sum Rate Maximization Versus MSE Minimization in FDD Massive MIMO Systems With Short Coherence Time
...Show More Authors

View Publication
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Thu Sep 22 2016
Journal Name
Applied Sciences
Analysis and Evaluation of Performance Gains and Tradeoffs for Massive MIMO Systems
...Show More Authors

View Publication
Scopus (16)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Fri Dec 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
Performance Analysis for Hybrid Massive MIMO FSO/RF Links Based on Efficient Channel Codes
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Aug 12 2021
Journal Name
Applied System Innovation
The Role of Correlation in the Performance of Massive MIMO Systems
...Show More Authors

Massive multiple-input multiple-output (m-MIMO) is considered as an essential technique to meet the high data rate requirements of future sixth generation (6G) wireless communications networks. The vast majority of m-MIMO research has assumed that the channels are uncorrelated. However, this assumption seems highly idealistic. Therefore, this study investigates the m-MIMO performance when the channels are correlated and the base station employs different antenna array topologies, namely the uniform linear array (ULA) and uniform rectangular array (URA). In addition, this study develops analyses of the mean square error (MSE) and the regularized zero-forcing (RZF) precoder under imperfect channel state information (CSI) and a realist

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
A Signal Amplification-based Transceiver for Visible Light Communication
...Show More Authors

Visible light communication (VLC) is an upcoming wireless technology for next-generation communication for high-speed data transmission. It has the potential for capacity enhancement due to its characteristic large bandwidth. Concerning signal processing and suitable transceiver design for the VLC application, an amplification-based optical transceiver is proposed in this article. The transmitter consists of a driver and laser diode as the light source, while the receiver contains a photodiode and signal amplifying circuit. The design model is proposed for its simplicity in replacing the trans-impedance and transconductance circuits of the conventional modules by a simple amplification circuit and interface converter. Th

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Baghdad Science Journal
Compact MIMO Slots Antenna Design with Different Bands and High Isolation for 5G Smartphone Applications
...Show More Authors

 In this paper, two elements of the multi-input multi-output (MIMO) antenna had been used to study the five (3.1-3.55GHz and 3.7-4.2GHz), (3.4-4.7 GHz), (3.4-3.8GHz) and (3.6-4.2GHz) 5G bands of smartphone applications that is to be introduced to the respective US, Korea, (Europe and China) and Japan markets. With a proposed dimension of 26 × 46 × 0.8 mm3, the medium-structured and small-sized MIMO antenna was not only found to have demonstrated a high degree of isolation and efficiency, it had also exhibited a lower level of envelope correlation coefficient and return loss, which are well-suited for the 5G bands application. From the fabrication of an inexpensive FR4 substrate with a 0.8 mm thickness level, a loss tang

... Show More
View Publication Preview PDF
Scopus (10)
Scopus Clarivate Crossref