In this article, we will present a quasi-contraction mapping approach for D iteration, and we will prove that this iteration with modified SP iteration has the same convergence rate. At the other hand, we prove that the D iteration approach for quasi-contraction maps is faster than certain current leading iteration methods such as, Mann and Ishikawa. We are giving a numerical example, too.
The aim of this paper, is to study different iteration algorithms types two steps called, modified SP, Ishikawa, Picard-S iteration and M-iteration, which is faster than of others by using like contraction mappings. On the other hand, the M-iteration is better than of modified SP, Ishikawa and Picard-S iterations. Also, we support our analytic proof with a numerical example.
The aim of this paper is to introduce the concepts of asymptotically p-contractive and asymptotically severe accretive mappings. Also, we give an iterative methods (two step-three step) for finite family of asymptotically p-contractive and asymptotically severe accretive mappings to solve types of equations.
This paper is concerned with the study of the fixed points of set-valued contractions on ordered metric spaces. The first part of the paper deals with the existence of fixed points for these mappings where the contraction condition is assumed for comparable variables. A coupled fixed point theorem is also established in the second part.
In this article, results have been shown via using a general quasi contraction multi-valued mapping in Cat(0) space. These results are used to prove the convergence of two iteration algorithms to a fixed point and the equivalence of convergence. We also demonstrate an appropriate conditions to ensure that one is faster than others.
In this article, we recalled different types of iterations as Mann, Ishikawa, Noor, CR-iteration and, Modified SP_iteration of quasi δ-contraction mappings, and we proved that all these iterations equivalent to approximate fixed points of δ-contraction mappings in Banach spaces.
In this paper, we will show that the Modified SP iteration can be used to approximate fixed point of contraction mappings under certain condition. Also, we show that this iteration method is faster than Mann, Ishikawa, Noor, SP, CR, Karahan iteration methods. Furthermore, by using the same condition, we shown that the Picard S- iteration method converges faster than Modified SP iteration and hence also faster than all Mann, Ishikawa, Noor, SP, CR, Karahan iteration methods. Finally, a data dependence result is proven for fixed point of contraction mappings with the help of the Modified SP iteration process.
In this work, we introduce Fibonacci– Halpern iterative scheme ( FH scheme) in partial ordered Banach space (POB space) for monotone total asymptotically non-expansive mapping (, MTAN mapping) that defined on weakly compact convex subset. We also discuss the results of weak and strong convergence for this scheme.
Throughout this work, compactness condition of m-th iterate of the mapping for some natural m is necessary to ensure strong convergence, while Opial's condition has been employed to show weak convergence. Stability of FH scheme is also studied. A numerical comparison is provided by an example to show that FH scheme is faster than Mann and Halpern iterative
... Show More