The aim of this article, we define new iterative methods called three-step type in which Jungck resolvent CR-iteration and resolvent Jungck SP-iteration are discussed and study rate convergence and strong convergence in Banach space to reach the fixed point which is differentially solve of nonlinear equations. The studies also expanded around it to find the best solution for nonlinear operator equations in addition to the varying inequalities in Hilbert spaces and Banach spaces, as well as the use of these iterative methods to approximate the difference between algorithms and their images, where we examined the necessary conditions that guarantee the unity and existence of the solid point. Finally, the results show that resolvent CR-iter
... Show MoreIn this article, we will present a quasi-contraction mapping approach for D iteration, and we will prove that this iteration with modified SP iteration has the same convergence rate. At the other hand, we prove that the D iteration approach for quasi-contraction maps is faster than certain current leading iteration methods such as, Mann and Ishikawa. We are giving a numerical example, too.
In this paper, a modified three-step iteration algorithm for approximating a joint fixed point of non-expansive and contraction mapping is studied. Under appropriate conditions, several strong convergence theorems and Δ-convergence theorems are established in a complete CAT (0) space. a numerical example is introduced to show that this modified iteration algorithm is faster than other iteration algorithms. Finally, we prove that the modified iteration algorithm is stable. Therefore these results are extended and improved to a novel results that are stated by other researchers. Our results are also complement to many well-known theorems in the literature. This type of research can be played a vital role in computer programming
... Show MoreThe aim of this paper is to study the convergence of an iteration scheme for multi-valued mappings which defined on a subset of a complete convex real modular. There are two main results, in the first result, we show that the convergence with respect to a multi-valued contraction mapping to a fixed point. And, in the second result, we deal with two different schemes for two multivalued mappings (one of them is a contraction and other has a fixed point) and then we show that the limit point of these two schemes is the same. Moreover, this limit will be the common fixed point the two mappings.
In this paper, we introduce weak and strong forms of ω-perfect mappings, namely the ï±-ω-perfect, weakly ï±-ω-perfect and stronglyï±-ω-perfect mappings. Also, we investigate the fundamental properties of these mappings. Finally, we focused on studying the relationship between weakly ï±-ω-perfect and stronglyï± -ω-perfect mappings.
This article will introduce a new iteration method called the zenali iteration method for the approximation of fixed points. We show that our iteration process is faster than the current leading iterations like Mann, Ishikawa, oor, D- iterations, and *- iteration for new contraction mappings called quasi contraction mappings. And we proved that all these iterations (Mann, Ishikawa, oor, D- iterations and *- iteration) equivalent to approximate fixed points of quasi contraction. We support our analytic proof by a numerical example, data dependence result for contraction mappings type by employing zenali iteration also discussed.
The purpose of this paper, is to study different iterations algorithms types three_steps called, new iteration,
The aim of this paper is to introduce the concepts of asymptotically p-contractive and asymptotically severe accretive mappings. Also, we give an iterative methods (two step-three step) for finite family of asymptotically p-contractive and asymptotically severe accretive mappings to solve types of equations.
in this paper, we give a concept of