Some cases of common fixed point theory for classes of generalized nonexpansive maps are studied. Also, we show that the Picard-Mann scheme can be employed to approximate the unique solution of a mixed-type Volterra-Fredholm functional nonlinear integral equation.
Experimental activity coefficients at infinite dilution are particularly useful for calculating the parameters needed in an expression for the excess Gibbs energy. If reliable values of γ∞1 and γ∞2 are available, either from direct experiment or from a correlation, it is possible to predict the composition of the azeotrope and vapor-liquid equilibrium over the entire range of composition. These can be used to evaluate two adjustable constants in any desired expression for G E. In this study MOSCED model and SPACE model are two different methods were used to calculate γ∞1 and γ∞2
In this article, we recalled different types of iterations as Mann, Ishikawa, Noor, CR-iteration and, Modified SP_iteration of quasi δ-contraction mappings, and we proved that all these iterations equivalent to approximate fixed points of δ-contraction mappings in Banach spaces.
The goal of this study is to provide a new explicit iterative process method approach for solving maximal monotone(M.M )operators in Hilbert spaces utilizing a finite family of different types of mappings as( nonexpansive mappings,resolvent mappings and projection mappings. The findings given in this research strengthen and extend key previous findings in the literature. Then, utilizing various structural conditions in Hilbert space and variational inequality problems, we examine the strong convergence to nearest point projection for these explicit iterative process methods Under the presence of two important conditions for convergence, namely closure and convexity. The findings reported in this research strengthen and extend
... Show MoreIn this paper, we study some cases of a common fixed point theorem for classes of firmly nonexpansive and generalized nonexpansive maps. In addition, we establish that the Picard-Mann iteration is faster than Noor iteration and we used Noor iteration to find the solution of delay differential equation.
Among a variety of approaches introduced in the literature to establish duality theory, Fenchel duality was of great importance in convex analysis and optimization. In this paper we establish some conditions to obtain classical strong Fenchel duality for evenly convex optimization problems defined in infinite dimensional spaces. The objective function of the primal problem is a family of (possible) infinite even convex functions. The strong duality conditions we present are based on the consideration of the epigraphs of the c-conjugate of the dual objective functions and the ε-c-subdifferential of the primal objective functions.
The research aims to measure the relationship and impact of the operations of the knowledge of management of the six dimensions (diagnosis knowledge, define knowledge objectives, knowledge generation, knowledge storage, distribution of knowledge, application of knowledge) in the fiscal performance of the General Authority for taxes of the four dimensions (financial, customers (taxpayers), Operations Interior, learn and grow), the research aims also to the use of computerized programs for training and career development of the Authority that helps to add knowledge workers in the Authority, and to reach an appropriate arrangement for knowledge management processes in the Authority, as well as analysis of the reality of the Authority to get
... Show MoreIn this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.
... Show MoreFamily social institution mission in the community, if and repaired Magistrate society and often lead that institution a positive role in the socialization, but a variety of factors ailing infect system family Vtfkdh role effective and influential in society and stands at the forefront of those factors disintegration family, whether caused by the death of one or both parents, divorce or separation, or whether the result of domestic weakness and poor family behavioral practices. And gaining the study of great importance and that the scarcity of studies that address the problem of delinquency female, is no secret that stand on the fact the role of disintegration family in the events of that problem will help and a large degree in the devel
... Show More