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1. Introduction and Preliminaries 
In [5] an important concept is introduced: the nano topology, which relates 

to a subset G of the universe U, where the components of the nano topological 
space are the boundary region, the upper region, and the lower region, using 
equivalence relations on them. [1,7] provided some definitions, namely nm-j- -
perfect, nm-j- -condensation point and nm-j- -closed set. In 2021 [7], they 
introduced the Fibrewise soft topological spaces concept. [8] also have a role in 
building this work. This paper introduces nano-perfect mappings and several 
related theorems concerning them.  

Definition 1.1: [4] Let R be a subset of the non-empty set U  where they are 
called equivalence relation on U. Then U is said to be the universe which 
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divides the equivalence classes into discrete parts, where their union is a U 
universe and their intersection is an empty set. Let G ⊆ U. Then, 

(a) The lower approximation of G is a symbol by    (G). That is,    (G) = 
 {R(G) : R(G) ⊆ G, g ∈ U} and R(G) symboly the equivalence class 
determined by g ∈ U. 

(b) The upper approximation of G is a symbol by    (G). That is,    (G) = 
 {R(G) : R(G) ∩ G   , g ∈ U}. 

(c) The boundary region of G is a symbol by    (G). That is,    (G) = 
   (G) –    (G). 

Definition 1.2: [5] Let R be an equivalence relation on U, then U be the 
universe and   (G) = {U,  ,    (G),    (G),    (G)}, and  G ⊆ U. Then 
  (G) it achieves the following axioms:  

(a) U and   ∈   (G).  
(b) The union of the components of any sub-collection of   (G) is in   (G).  
(c) The intersection of the components of any finite subcollection of   (G) is 

in   (G). 

Therefore,   (G) is a topology on U is said to be the nano topology 
(denoted by nano-top.) on U with reference to G. We called (U,   (G)) as the 
nano topological space (denoted by nano-top-sp.). The components of   (G) are 
called nano-open sets. A nano closed set is the complement of a nano open set.  

Definition 1.3: [5] Let (U,   (G)) and (V,    (H)) be nano-top-sp’s. Then a 
mapping (denoted by map.) f : (U,   (G))   (V,    (H)) is nano continuous 
(denoted by nano-cont.) on U if the inverse image of each nano-open-set in V is 
nano-open-set in U.  

Definition 1.4: [5] A map. f : (U,   (G))   (V,    (H)) is a nano-closed-map if 
the image of each nano-closed-set in U is nano-closed-set in V. 

Definition 1.5: [3] A collection {   : i ∈ I } of nano-open-sets in a nano-top-sp. 
(U,   (G)) is said to be a nano-open-cover of a subset B of U if B   {   : i ∈ I } 
holds.  

We go behind closely for other notations not mentioned here [2, 3, 5, 6, 7]. 

2. Nano Perfect  Mappings 
In this chapter, we will introduce nano-perfect mappings and some related 

theories.  

Definition  2.1: A map f : (G,   (G))   (H,    (H)) is called nano perfect if it 
is nano continuous, nano closed, and for each h ∈ H,    ( ) is nano-compact 
space. 

The following examples explain the definition: 
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Example  2.2: Let U  *       + with   ⁄  = {{n},{m}  *   ++       
*   +      Then   (G) = {U,   ,{n} ,{n, k, e}, {k, e}}. If V = {p, q, r, s} and 
   ⁄  = {{p}, {q}, {r, s}} and H = {p, r}   V. So    (H) = {V,   ,{p},{p, r, 
s},{r, s}}. Define f : (U,   (G))    (V,     (H)) Such as :  f(n) = p , f(m) = q , 
f(k) = r , f(e) = s . Then f is nano-perfect- map. 

Example 2.3: If U = {f, g, h, o} and   ⁄  = {{g}, {h}, {f, o}}. Let G = {f, g}   
U. So    (G) = {U,  , {g}, {f, g, o}, {f, o}}. Let V = {4, 5, 6, 7} with    ⁄  = 
{{4}, {5}, {6}, {7}} and H = {4, 6, 7}   V. Then     (H) = {V,  , {4, 6, 7}}. 
Define f : (U,   (G))    (V,    (H)) as :  f(f) = 4 , f(g) = 5, f(h) = 6, f(o) = 7 
then f is not nano-perfect- map . 

Remarks on nano perfect mapping 2.4 : 
(a) Let be a nano-Hausd-sp. and f : (G,   (G))    (H,    (H)) be a nano-cont., 

one-to-one, map. Then, f is nano-perfect if and only if f is nano-closed. 
(b) Let M ⊆ G, M be nano-Hausd-sp. and    : M   G be the embedding (i.e., 

   (m) = m , for all m ∈ M ). Then    is nano-perfect if and only if 
NCl(M) = M. 

(c) Let G be a nano-compact-sp. and H be a nano-Hausd-sp., let f : (G,   (G))  
  (H,    (H))  be nano-cont. So f is a nano-perfect-map. 

Theorem 2.5: If G is a nano-compact-sp. and H is nano-Hausd-sp., then the 
projection P : G×H   H is nano-perfect. 

Theorem 2.6: A nano-cont. map f : (G,   (G))   (H,    (H)) is nano-closed if 
and only if for each point h ∈ H and all nano-open-set U   G such as    (h)   
U, then find an nano-open-set V of H such as h ∈ V and    (V)   U. 

Theorem 2.7: If f : (G,   (G))   (H,    (H)) is a nano-perfect-map, then for 
each nano-compact-sub-sp. I   H the inverse image    (I) is nano-compact. 

Corollary 2.8: The composite of nano-perfect- maps is a nano-perfect map.  

Lemma 2.9: If A is a nano-compact-sub-sp. of a nano-regu-sp. G, then for each 
nano-compact-sub-sp. B disjoint from A find nano-open-sets U, V   G such as A 
  U, B   V and U   V =  . 

Lemma 2.10: A nano-perfect-map f : (G,   (G))   (H,    (H)) cannot be nano-
continuously extended over any nano-Hausd-sp. I consist of G as a nano-dense 
perfect-sub-space.  

Proposition 2.11: If the structure of nano-cont. Map f : (G,   (G))   (H, 
   (H)) and j : (H,    (H))   (I,    (I)), where H is a nano-Hausd-sp., is nano-
perfect, then the map j  ( ) and f are nano-perfect. 
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Theorem 2.12: If f : (G,   (G))   (H,    (H)) is a nano-perfect-map., then for 
any nano-closed A   G and any B   H the restrictions f  : A  H  and    : 
   (B)  B  are nano-perfect.  

Theorem 2.13: Let f : (G,   (G))   (H,    (H))  be a nano-perfect-map. If G is 
nano-dense in a nano-Hausd-space.   , and H   , then any nano-cont. 
extension    :        of f maps     G into     H. 

Proof: Suppose not. Then there is a g ∈   – G with   (g) ∈ H. Let h =   (g) and 
A =    (h). Now A is nano-compact and g ∉ A, so there are disjoint nano-open 
U and V in   with g ∈ U and A   V. Then g ∈NCl(U G) NCl(G-V), so h = 
  (g) ∈ H   NCl   (G-V) = H   NCl f(G-V) = f(G-V) which is contradiction. 
That completes the proof. 

Theorem 2.14: Let G be a nano-Hausd-sp., a finite cover *  +   
  of the space G 

and a family *   +   
  of appropriate maps, where N   :      Y, such as the 

combination N f =          …      is nano-cont. If all maps     are nano-
perfect, then the combination f is nano-perfect. 

Lemma 2.15: If *  + ∈  is a locally finite nano-closed-cover of a space G and 
*  + ∈  where    :     H, is a family of appropriate nano-cont. map, then the 
combination f =   ∈    is a nano-cont. map of G to H.  

Theorem 2.16: If *  +   
  is a finite nano-closed cover or a finite nano-open 

cover of a nano-Hausd-sp. G and *  +    
 where    :     H, is a family of 

appropriate nano-perfect-maps, then the combination f =       …     is a 
nano-perfect-map of G to H.  

Theorem 2.17: The Cartesian product f = ∏    ∈  where    :         and 
       for s ∈ S, is nano-perfect if and only if all mappings    are nano-
perfect. 

Theorem 2.18: The diagonal of any family of nano-perfect-maps is nano-
perfect-map. 

Proof: The diagonal can be represented as the restriction of the Cartesian 
product of maps to a nano-closed-set. 

Let us note the fact that the diagonal.       is a nano-perfect-map does not 
imply that    and    are nano-perfect, as the following example shows :  

Example 2.19: Let    = {a, b, c} with     ⁄ = {{a}, {b}, {c}} and G = {a, b}   
  then   (G) = {  ,  , {a, b}}. Let   = {1, 2, 3} and     ⁄  = {{1}, {2}, {3}} 
and H = {1, 2}       then    (H) = {  ,  , {1, 2}}. Define   : (  ,    (G))   
(  ,    (H)) such as : f(a) = 1, f(b) = 3, f(c) = 2 then    is not nano-perf-map. 
because of    is not nano-cont. Mapping and not nano-closed mapping. 
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Let    = {d, e, f} with     ⁄  = {{d}, {e}, {f}} and G = {d, e}      then 
  (G) = {  ,  , {d, e}}. Let    = {4, 5, 6} and     ⁄  = {{4}, {5}, {6}} and H = 
{4, 5}       then    (H) = {  ,  , {4, 5}}. Define    : (  ,   (G))   (  , 
   (H))  such as : f(d) = 4, f(e) = 6, f(f) = 5 then    is not nano-perf-map. because 
of    is not nano-cont. Mapping and not nano-closed mapping. 

Let U = {a, b, c} with U ⁄ R = {{a}, {b}, {c}} and G = {a, b}   U then 
  (G) = {U,  , {a, b}}. Let    = {1, 2, 3} and     = {4, 5, 6} and     ×    = 
{{1} ×    , {2} ×    , {3}×   } and (    ×   ) ⁄    = {{1} ×    , {2} ×    , {3}× 
  } and H = {{{1} ×    , {2} ×   }      ×      then    (  ×   ) = {    ×    ,  , 
{1} ×    , {2} ×   }. Define ∆ : (U,   (G))   (   ×   ,    (       )) such as : 
f(a) = {1} ×    , f(b) = {1} ×   , f(c) = {3}×    then  ∆  is nano-perf-map.  

It turns out that the last theorem can be significantly strengthened. 

Theorem 2.20: Suppose we are given a family of nano-cont.maps *  + ∈  , 
where    : G    . If there an    ∈ S such as     is a nano-perfect-map and    
is a nano-Hausd- sp. for each s ∈ S\*  +, then the diagonal   ∈    is a nano-
perfect- map.  

Corollary 2.21: If G admits a nano-perfect-map into a top- sp.H and a nano-
cont. one-to-one map into a nano-Hausd-sp. I, then G, is homeomorphic to a 
nano-closed-sub-sp. of H×I. 

Corollary 2.22: If H is any nano-top- sp., then the following properties of a 
completely nano-regu-sp. G are equivalent :  

(a) A nano-perfect-map f : (G,   (G))   (H,    (H)). 
(b) G is homeomorphic to a nano-closed-sub-sp. of H×I for some nano-

compact nano-Hausd-sp. I.  
(c) G is homeomorphic to a nano-closed-sub-sp. of H×I for some nano-

compact-sp. I.  

This corollary is an analogue of Proposition 2.11, so we give another proof 
of the second part of this theorem.  

Corollary 2.23: Let f : (G,   (G))   (H,    (H)) and j : (H,    (H))   (I, 
   (I)) be nano-cont., and suppose that j is nano-perfect and H is nano-Hausd. 
Then f is nano-perfect. 

Corollary 2.24: If t : (G,   (G))   (I,    (I)) is nano-perfect and has a nano-
cont. Extension j : (H,    (H))   (I,    (I)) for some nano-Hausd- sp. H   G, 
then G is nano-closed in H.  

Proof: Let f : (G,   (G))   (H,    (H)) be the injection mapping. Now, 
consider j : (G,   (G))   (I,    (I)). Since t = j, so by Corollary 2. 24, f : (G, 
  (G))   (H,    (H)) is nano-perfect, implying that f(G) = G   H is nano-
closed.  
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The Kuratowski and Mrowka Theorem For Nano-Top-sp. 2.25 : 
For a nano-Hausd-sp G the statement are equivalent : 
(a) Space G is nano-compact. 
(b) For each nano-top-sp H, the proj. P : G×H   H is nano-closed.  
(c) For each nano-normal space H the projection P :G×H   H is nano-closed. 

The following interesting characterization of nano-perfect-maps also is 
connected with Theorem 2.18.  

Theorem 2.26: For a nano-cont. map f: (G,   (G))   (I,    (I)) defined on a 
nano-Hausd-sp G the statement is equivalent:  

(a) The map f is nano-perfect.  
(b) For each nano-Hausd-sp H the Cartesian product f×    is nano-perfect. 
(c) For each nano-Hausd-sp H the Cartesian product f×    is nano-closed.  

In the realm of nano Tychon off-spaces the class of nano-perfect-maps can 
be characterized in terms of extensions. We shall now give two characterizations 
of this kind; in the first of these characterizations, we assume that the spaces G 
and H are subspaces of their compactifications. Considered in the theorem.  

Theorem 2.27: For a nano-cont. map f : (G,   (G))   (H,    (H)), where G 
and H are nano-Tychonoff-space, the statement are equivalent :  

(a) The map f is nano-perfect.  
(b) For each nano-compactification    the extension   :       of the 

map f satisfies the condition   (    )      .  
(c) The extension F:         of the map f satisfies the condition F(    ) 

      .  
(d) Find a nano-compactification    such as the extension.    :        of 

the map f satisfies the condition   (    )    (    ).  

Theorem 2.28: A nano-cont. f : (G,   (G))   (H,    (H)), where G and H are 
nano-Tychonoff-spaces, is nano-perfect if and only if it cannot be nano-
continuously extended over any nano-Hausd-sp I that consist of G as a nano-
dense perfect-sub-sp.  

Proposition 2.29: Let f : (G,   (G))   (H,    (H))  be a nano-perfect-map from 
a space G onto H, and let S be a nano-dense subset of G. The nano-cont. map j: 
S  f(S) of S onto f(S) given by the restriction of f is a nano-perfect-map if and 
only if S =    f(S).  

Definition 2.30: In a nano-top-sp. G is a nano-Hausd-compactly-generated-sp. 
(denoted by nano k-sp.) in which a subset is nano-closed if an intersection with 
any nano-compact-sub-set is closed.  
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