The proposed design of neural network in this article is based on new accurate approach for training by unconstrained optimization, especially update quasi-Newton methods are perhaps the most popular general-purpose algorithms. A limited memory BFGS algorithm is presented for solving large-scale symmetric nonlinear equations, where a line search technique without derivative information is used. On each iteration, the updated approximations of Hessian matrix satisfy the quasi-Newton form, which traditionally served as the basis for quasi-Newton methods. On the basis of the quadratic model used in this article, we add a new update of quasi-Newton form. One innovative features of this form's is its ability to estimate the energy function's or performance function with high order precision with second-order curvature while employ the given function value data and gradient. The global convergence of the proposed algorithm is established under some suitable conditions. Under some hypothesis the approach is established to be globally convergent. The updated approaches can be numerical and more efficient than the existing comparable traditional methods, as illustrated by numerical trials. Numerical results show that the given method is competitive to those of the normal BFGS methods. We show that solving a partial differential equation can be formulated as a multi-objective optimization problem, and use this formulation to propose several modifications to existing methods. Also the proposed algorithm is used to approximate the optimal scaling parameter, which can be used to eliminate the need to optimize this parameter. Our proposed update is tested on a variety of partial differential equations and compared to existing methods. These partial differential equations include the fourth order three dimensions nonlinear equation, which we solve in up to four dimensions, the convection-diffusion equation, all of which show that our proposed update lead to enhanced accuracy.
Gumbel distribution was dealt with great care by researchers and statisticians. There are traditional methods to estimate two parameters of Gumbel distribution known as Maximum Likelihood, the Method of Moments and recently the method of re-sampling called (Jackknife). However, these methods suffer from some mathematical difficulties in solving them analytically. Accordingly, there are other non-traditional methods, like the principle of the nearest neighbors, used in computer science especially, artificial intelligence algorithms, including the genetic algorithm, the artificial neural network algorithm, and others that may to be classified as meta-heuristic methods. Moreover, this principle of nearest neighbors has useful statistical featu
... Show MorePiperine, a crystalline alkaloid compound isolated from Piper nigrum, piper longum, and other types of piper, has had many fabulous pharmacological advantages for preventing and treating some specific diseases, such as analgesic, anti-inflammatory, hepatoprotective, antimetastatic, antithyroid, immunomodulatory, antitumor, rheumatoid arthritis, osteoarthritis, Alzheimer's, and improving the bioavailability of other drugs. However, its potential for clinical use through oral usage is hindered by water solubility and poor bioavailability. The low level of oral bioavailability is caused by low solubility in water and is photosensitive, susceptible to isomerization by UV light, which causes piperine concentration to decrease. Many different
... Show MoreIn this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
Bearing capacity of soil is an important factor in designing shallow foundations. It is directly related to foundation dimensions and consequently its performance. The calculations for obtaining the bearing capacity of a soil needs many varying parameters, for example soil type, depth of foundation, unit weight of soil, etc. which makes these calculation very variable–parameter dependent. This paper presents the results of comparison between the theoretical equation stated by Terzaghi and the Artificial Neural Networks (ANN) technique to estimate the ultimate bearing capacity of the strip shallow footing on sandy soils. The results show a very good agreement between the theoretical solution and the ANN technique. Results revealed that us
... Show MoreThe current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo
The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show MoreThe research aims to characterize the strategic plan of the Educational Professional Development Center, to reveal the most important training needs for teachers from this center, to reveal the extent to which this center meets those needs, and to identify the differences between teacher responses about the degree of importance, availability of those needs according to variables of sex, specialization, and years of experience. This descriptive study adopted a questionnaire applied to (256) teachers in the K.S.A. The results of the study showed that all training needs ranged in the degree of importance from large to very large and that the most important were the skills associated with communicating with members of the learning community.
... Show More