The primary aim of this paper, is to introduce the rough probability from topological view. We used the Gm-topological spaces which result from the digraph on the stochastic approximation spaces to upper and lower distribution functions, the upper and lower mathematical expectations, the upper and lower variances, the upper and lower standard deviation and the upper and lower r th moment. Different levels for those concepts are introduced, also we introduced some results based upon those concepts.
This paper presents the concepts of prepaths, paths, and cycles in α-topological spaces and studies them in orderable spaces. Also, many relationships are proved with their equivalences using some properties in topological spaces like compactness and locally connectedness.
In the present study, the cluster concept was adopted to find points parallel to the cumulative points of any subset in topology cluster proximity spaces. The takeoff set term was given by the researcher to the set of all points. Also, an opposite definition was found for it, which is the follower set. The relation between them was found and their most important properties were highlighted. Through these two sets, new sets were built that are called, f_σ-set ,f_tσ-set ,t_fσ-set ,bushy set, scant set .
The aim of this paper is to introduce and study new class of fuzzy function called fuzzy semi pre homeomorphism in a fuzzy topological space by utilizing fuzzy semi pre-open sets. Therefore, some of their characterization has been proved; In addition to that we define, study and develop corresponding to new class of fuzzy semi pre homeomorphism in fuzzy topological spaces using this new class of functions.
The main purpose of this article is to study the soft LC-spaces as soft spaces in which every soft Lindelöf subset of is soft closed. Also, we study the weak forms of soft LC-spaces and we discussed their relationships with soft LC-spaces as well as among themselves.
Sequences spaces , m , p have called quasi-Sobolev spaces were introduced by Jawad . K. Al-Delfi in 2013 [1]. In this paper , we deal with notion of quasi-inner product space by using concept of quasi-normed space which is generalized to normed space and given a relationship between pre-Hilbert space and a quasi-inner product space with important results and examples. Completeness properties in quasi-inner product space gives us concept of quasi-Hilbert space . We show that , not all quasi-Sobolev spa
... Show MoreIn this paper, we introduce a new class of sets, namely , s*g-ï¡-open sets and we show that the family of all s*g-ï¡-open subsets of a topological space ) ,X( ï´ from a topology on X which is finer than ï´ . Also , we study the characterizations and basic properties of s*g-ï¡open sets and s*g-ï¡-closed sets . Moreover, we use these sets to define and study a new class of functions, namely , s*g- ï¡ -continuous functions and s*g- ï¡ -irresolute functions in topological spaces . Some properties of these functions have been studied .
In this paper,there are new considerations about the dual of a modular spaces and weak convergence. Two common fixed point theorems for a -non-expansive mapping defined on a star-shaped weakly compact subset are proved, Here the conditions of affineness, demi-closedness and Opial's property play an active role in the proving our results.
In this paper, we introduce the notion of Jordan generalized Derivation on prime and then some related concepts are discussed. We also verify that every Jordan generalized Derivation is generalized Derivation when is a 2-torsionfree prime .
We introduce and discus recent type of fibrewise topological spaces, namely fibrewise bitopological spaces, Also, we introduce the concepts of fibrewise closed bitopological spaces, fibrewise open bitopological spaces, fibrewise locally sliceable bitopological spaces and fibrewise locally sectionable bitopological spaces. Furthermore, we state and prove several propositions concerning with these concepts.
Background: Bladder exstrophy is a rare and complex urogenital malformation. The current surgical approach consists of early closure followed by other procedures later on aiming for continence. Primary closure usually requires some form of osteotomy to facilitate successful bladder and abdominal wall repair. For decades, bilateral posterior iliac osteotomy has been the most commonly used technique. A new osteotomy technique, consisting of anterior pelvic ostecotomy of the superior pubic ramus, seems to be a safe and quick alternative method to obtain tension-free approximation of the symphysis pubis
Patients and methods: A prospective study between 2006 and 2013, were 10 (9 males and 1 female) newborns underwent surgery for bladder ex