In this paper introduce some generalizations of some definitions which are, closure converge to a point, closure directed toward a set, almost ω-converges to a set, almost condensation point, a set ωH-closed relative, ω-continuous functions, weakly ω-continuous functions, ω-compact functions, ω-rigid a set, almost ω-closed functions and ω-perfect functions with several results concerning them.
The goal of this article is to construct fibrewise w-compact (resp. locally w-compact) spaces. Some related results and properties of these concepts will be investigated. Furthermore, we investigate various relationships between these concepts and three classes of fibrewise w-separation axioms.
Continuous functions are novel concepts in topology. Many topologists contributed to the theory of continuous functions in topology. The present authors continued the study on continuous functions by utilizing the concept of gpα-closed sets in topology and introduced the concepts of weakly, subweakly and almost continuous functions. Further, the properties of these functions are established.
In this paper the concepts of weakly (resp., closure, strongly) Perfect Mappings are defined and the important relationships are studied: (a) Comparison between deferent forms of perfect mappings. (b) Relationship between compositions of deferent forms of perfect mappings. (c) Investigate relationships between deferent forms of perfect mappings and their graphs mappings.
In this paper we introduce a new type of functions called the generalized regular
continuous functions .These functions are weaker than regular continuous functions and
stronger than regular generalized continuous functions. Also, we study some
characterizations and basic properties of generalized regular continuous functions .Moreover
we study another types of generalized regular continuous functions and study the relation
among them
This work, introduces some concepts in bitopological spaces, which are nm-j-ω-converges to a subset, nm-j-ω-directed toward a set, nm-j-ω-closed mappings, nm-j-ω-rigid set, and nm-j-ω-continuous mappings. The mainline idea in this paper is nm-j-ω-perfect mappings in bitopological spaces such that n = 1,2 and m =1,2 n ≠ m. Characterizations concerning these concepts and several theorems are studied, where j = q , δ, a , pre, b, b.
In this paper, we introduce a new type of functions in bitopological spaces, namely, (1,2)*-proper functions. Also, we study the basic properties and characterizations of these functions . One of the most important of equivalent definitions to the (1,2)*-proper functions is given by using (1,2)*-cluster points of filters . Moreover we define and study (1,2)*-perfect functions and (1,2)*-compact functions in bitopological spaces and we study the relation between (1,2)*-proper functions and each of (1,2)*-closed functions , (1,2)*-perfect functions and (1,2)*-compact functions and we give an example when the converse may not be true .
The objective of this paper is to show modern class of open sets which is an -open. Some functions via this concept were studied and the relationships such as continuous function strongly -continuous function -irresolute function -continuous function.
The main purpose of this paper is to introduce a some concepts in fibrewise bitopological spaces which are called fibrewise , fibrewise -closed, fibrewise −compact, fibrewise -perfect, fibrewise weakly -closed, fibrewise almost -perfect, fibrewise ∗-bitopological space respectively. In addition the concepts as - contact point, ij-adherent point, filter, filter base, ij-converges to a subset, ij-directed toward a set, -continuous, -closed functions, -rigid set, -continuous functions, weakly ijclosed, ij-H-set, almost ij-perfect, ∗-continuous, pairwise Urysohn space, locally ij-QHC bitopological space are introduced and the main concept in this paper is fibrewise -perfect bitopological spaces. Several theorems and characterizations c
... Show MoreIn this paper, we will introduce and study the concept of nano perfect mappings by using the definition of nano continuous mapping and nano closed mapping, study the relationship between them, and discuss them with many related theories and results. The k-space and its relationship with nano-perfect mapping are also defined.
The essential objective of this paper is to introduce new notions of fibrewise topological spaces on D that are named to be upper perfect topological spaces, lower perfect topological spaces, multi-perfect topological spaces, fibrewise upper perfect topological spaces, and fibrewise lower perfect topological spaces. fibrewise multi-perfect topological spaces, filter base, contact point, rigid, multi-rigid, multi-rigid, fibrewise upper weakly closed, fibrewise lower weakly closed, fibrewise multi-weakly closed, set, almost upper perfect, almost lower perfect, almost multi-perfect, fibrewise almost upper perfect, fibrewise almost lower perfect, fibrewise almost multi-perfect, upper* continuous fibrewise upper∗ topol
... Show More