Preferred Language
Sort By
Filters
Filter
Publication
Publication Date
Indexed In
Publication Date
Fri Jan 16 2026
Journal Name
F1000research
Update Quasi-Newton Algorithm for Training ANN
...Show More Authors

The proposed design of neural network in this article is based on new accurate approach for training by unconstrained optimization, especially update quasi-Newton methods are perhaps the most popular general-purpose algorithms. A limited memory BFGS algorithm is presented for solving large-scale symmetric nonlinear equations, where a line search technique without derivative information is used. On each iteration, the updated approximations of Hessian matrix satisfy the quasi-Newton form, which traditionally served as the basis for quasi-Newton methods. On the basis of the quadratic model used in this article, we add a new update of quasi-Newton form. One innovative features of this form's is its ability to estimate the energy functio

... Show More
View Publication Preview PDF
Crossref