Preferred Language
Articles
/
EkKM0JsBMeyNPGM3e-Hl
Update Quasi-Newton Algorithm for Training ANN
...Show More Authors

The proposed design of neural network in this article is based on new accurate approach for training by unconstrained optimization, especially update quasi-Newton methods are perhaps the most popular general-purpose algorithms. A limited memory BFGS algorithm is presented for solving large-scale symmetric nonlinear equations, where a line search technique without derivative information is used. On each iteration, the updated approximations of Hessian matrix satisfy the quasi-Newton form, which traditionally served as the basis for quasi-Newton methods. On the basis of the quadratic model used in this article, we add a new update of quasi-Newton form. One innovative features of this form's is its ability to estimate the energy function's or performance function with high order precision with second-order curvature while employ the given function value data and gradient. The global convergence of the proposed algorithm is established under some suitable conditions. Under some hypothesis the approach is established to be globally convergent. The updated approaches can be numerical and more efficient than the existing comparable traditional methods, as illustrated by numerical trials. Numerical results show that the given method is competitive to those of the normal BFGS methods. We show that solving a partial differential equation can be formulated as a multi-objective optimization problem, and use this formulation to propose several modifications to existing methods. Also the proposed algorithm is used to approximate the optimal scaling parameter, which can be used to eliminate the need to optimize this parameter. Our proposed update is tested on a variety of partial differential equations and compared to existing methods. These partial differential equations include the fourth order three dimensions nonlinear equation, which we solve in up to four dimensions, the convection-diffusion equation, all of which show that our proposed update lead to enhanced accuracy.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Stability of Back Propagation Training Algorithm for Neural Networks
...Show More Authors

In this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained

View Publication Preview PDF
Crossref
Publication Date
Sun Sep 01 2019
Journal Name
Baghdad Science Journal
Symmetric and Positive Definite Broyden Update for Unconstrained Optimization
...Show More Authors

Broyden update is one of the one-rank updates which solves the unconstrained optimization problem but this update does not guarantee the positive definite and the symmetric property of Hessian matrix.

In this paper the guarantee of positive definite and symmetric property for the Hessian matrix will be established by updating the vector  which represents the difference between the next gradient and the current gradient of the objective function assumed to be twice continuous and differentiable .Numerical results are reported to compare the proposed method with the Broyden method under standard problems.

View Publication Preview PDF
Scopus (10)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Sep 01 2019
Journal Name
Baghdad Science Journal
Common Fixed Point of a Finite-step Iteration Algorithm Under Total Asymptotically Quasi-nonexpansive Maps
...Show More Authors

      Throughout this paper, a generic iteration algorithm for a finite family of total asymptotically quasi-nonexpansive maps in uniformly convex Banach space is suggested. As well as weak / strong convergence theorems of this algorithm to a common fixed point are established. Finally, illustrative numerical example by using Matlab is presented.

View Publication Preview PDF
Scopus (15)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Positive Definiteness of Symmetric Rank 1 (H-Version) Update for Unconstrained Optimization
...Show More Authors

Several attempts have been made to modify the quasi-Newton condition in order to obtain rapid convergence with complete properties (symmetric and positive definite) of the inverse of  Hessian matrix (second derivative of the objective function). There are many unconstrained optimization methods that do not generate positive definiteness of the inverse of Hessian matrix. One of those methods is the symmetric rank 1( H-version) update (SR1 update), where this update satisfies the quasi-Newton condition and the symmetric property of inverse of Hessian matrix, but does not preserve the positive definite property of the inverse of Hessian matrix where the initial inverse of Hessian matrix is positive definiteness. The positive definite prope

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Optimal Dimensions of Small Hydraulic Structure Cutoffs Using Coupled Genetic Algorithm and ANN Model
...Show More Authors

A genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil wa

... Show More
View Publication Preview PDF
Crossref (10)
Crossref
Publication Date
Fri Jul 19 2024
Journal Name
An International Journal Of Optimization And Control: Theories & Applications (ijocta)
Design optimal neural network based on new LM training algorithm for solving 3D - PDEs
...Show More Authors

In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.

View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Sat Oct 28 2023
Journal Name
Baghdad Science Journal
Newton-Kantorovich Method for Solving One of the Non-Linear Sturm-Liouville Problems
...Show More Authors

Due to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Dec 01 2010
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Statistical study for Indian quasi-stable population
...Show More Authors

During more than (50) years past, India has achieved considerable social and economic progress. It is also generally assumed that the future progress will be even more rapid and that India will be an important player in the global market. India has only (2.5) percent of global land whereas it has to provide home for one-sixth of world's population .On examining the past trends of India's population ,it may be observed that during the latter half of the twentieth century ,about (650) million populations were added to the country ,thus living in a country with a high population density and high growth rate , India in need a transition from high fertility high mortality to a low fertility low mortality and towards stable population situatio

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Baghdad Science Journal
Principally Quasi-Injective Semimodules
...Show More Authors

In this work, the notion of principally quasi- injective semimodule is introduced, discussing the conditions needed to get properties and characterizations similar or related to the case in modules.

      Let  be an -semimodule with endomorphism semiring Ș. The semimodule  is called principally quasi-injective, if every  -homomorphism from any cyclic subsemimodule of  to  can be extended to an endomorphism of .

View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Jun 05 2022
Journal Name
Network
A Computationally Efficient Gradient Algorithm for Downlink Training Sequence Optimization in FDD Massive MIMO Systems
...Show More Authors

Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref