Let R be a commutative ring with unity and let M, N be unitary R-modules. In this research, we give generalizations for the concepts: weakly relative injectivity, relative tightness and weakly injectivity of modules. We call M weakly N-quasi-injective, if for each f  Hom(N,ï) there exists a submodule X of ï such that f (N) ïƒ X ≈ M, where ï is the quasi-injective hull of M. And we call M N-quasi-tight, if every quotient N / K of N which embeds in ï embeds in M. While we call M weakly quasi-injective if M is weakly N-quasiinjective for every finitely generated R-module N. Moreover, we generalize some properties of weakly N-injectiv
... Show MoreThroughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.
Let R be a ring and let M be a left R-module. In this paper introduce a small pointwise M-projective module as generalization of small M- projective module, also introduce the notation of small pointwise projective cover and study their basic properties.
.
This study deals with an important area in the field of linguistics, namely person deixis.
The study aims at: (1) Describing the notion of deixis, its importance, and its place in the field
of linguistics, (2) Presenting a detailed illustration of person deixis, and (3) Conducting an
analysis of person deixis in one of Synge‟s plays Riders to The Sea according to Levinson‟s
model. The most important aim of these three is the third one (the analysis). To achieve this
aim, the researcher depends on Levinson‟s (1983) descriptive approach. According to the
descriptive approach of deixis, the category of person deixis can be defined as the encoding of
the participant roles in the speech situation. This encoding is r
In this paper, a new class of nonconvex sets and functions called strongly -convex sets and strongly -convex functions are introduced. This class is considered as a natural extension of strongly -convex sets and functions introduced in the literature. Some basic and differentiability properties related to strongly -convex functions are discussed. As an application to optimization problems, some optimality properties of constrained optimization problems are proved. In these optimization problems, either the objective function or the inequality constraints functions are strongly -convex.
The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then Ais called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
In this work the concept of semi-generalized regular topological space was introduced and studied via semi generalized open sets. Many properties and results was investigated and studied, also it was shown that the quotient space of semi-generalized regular topological space is not, in general semi-generalizedspace.
Dans la langue française, une forme d'auxiliarité, composée de deux éléments cohérents l'auxiliant et l'auxilié, fournit, en effet, à la phrase une diversité significative et structurale. L'auxiliarité, renvoie à l'unification de deux éléments grammaticaux afin de localiser l'énoncé sur l'axe du temps, d'aspect ou de mode. É. Benveniste définit l'auxiliarité en : « Il s'agit d'une forme linguistique unitaire qui se réalise, à travers des paradigmes entiers, en deux éléments, dont chacun assume une partie des fonctions grammaticales, et qui sont à la fois liés et autonomes, distincts et complémentaires »[1]. Ces deux éléments d'auxiliarité possèden
... Show MoreThe definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then A is called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.