The aim of this paper is to study the Zariski topology of a commutative KU-algebra. Firstly, we introduce new concepts of a KU-algebra, such as KU-lattice, involutory ideal and prime ideal and investigate some basic properties of these concepts. Secondly, the notion of the topology spectrum of a commutative KU-algebra is studied and several properties of this topology are provided. Also, we study the continuous map of this topological space.
Inˑthis work, we introduce the algebraic structure of semigroup with KU-algebra is called KU-semigroup and then we investigate some basic properties of this structure. We define the KU-semigroup and several examples are presented. Also,we study some types of ideals in this concept such as S-ideal,k- ideal and P-ideal.The relations between these types of ideals are discussed and few results for product S-ideals of product KU-semigroups are given. Furthermore, few results of some ideals in KU-semigroup under homomorphism are discussed.
In this paper, we introduce the concepts of positive implicative [resp. implicative and commutative] Γ-KU-algebras, and obtain their some properties (including characterizations) respectively and some relationships among them. Next, we propose the notions of positive implicative [resp. implicative and commutative] Γ-ideals of a Γ-KU-algebra, and deal with their some properties (including characterizations) respectively and some relationships among them. Finally, we define a topological Γ-KU-algebra and discuss its various topological structures.
Binary relations or interactions among bio-entities, such as proteins, set up the essential part of any living biological system. Protein-protein interactions are usually structured in a graph data structure called "protein-protein interaction networks" (PPINs). Analysis of PPINs into complexes tries to lay out the significant knowledge needed to answer many unresolved questions, including how cells are organized and how proteins work. However, complex detection problems fall under the category of non-deterministic polynomial-time hard (NP-Hard) problems due to their computational complexity. To accommodate such combinatorial explosions, evolutionary algorithms (EAs) are proven effective alternatives to heuristics in solvin
... Show MoreThis paper work new and unprecedented definitions of sets, which we have named supra fan, supra. delta fan, supra. semi delta fan sets, which are generated by three sets of specific type of supra open sets, it was utilized supra open, supra delta open, supra. semi delta open sets with special conditions. It is highlighted many details of these new types of fan sets, their axis, blades and their annular sets using tables. Attention is given to the interior and the closure of these three types in supra topological spaces. The research was further enriched numerous and diverse examples. Subsequently, the focus shifted to supra. semi delta fan sets to prove lemma and theorem.
The concept of fully pseudo stable Banach Algebra-module (Banach A-module) which is the generalization of fully stable Banach A-module has been introduced. In this paper we study some properties of fully stable Banach A-module and another characterization of fully pseudo stable Banach A-module has been given.
It is known that, the concept of hyper KU-algebras is a generalization of KU-algebras. In this paper, we define cubic (strong, weak,s-weak) hyper KU-ideals of hyper KU-algebras and related properties are investigated.
Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreLet G be a graph, each edge e of which is given a weight w(e). The shortest path problem is a path of minimum weight connecting two specified vertices a and b, and from it we have a pre-topology. Furthermore, we study the restriction and separators in pre-topology generated by the shortest path problems. Finally, we study the rate of liaison in pre-topology between two subgraphs. It is formally shown that the new distance measure is a metric
This work includes design, implementation and testing of a microcontroller – based spectrum analyzer system. Both hardware and software structures are built to verify the main functions that are required by such system. Their design utilizes the permissible and available tools to achieve the main functions of the system in such a way to be modularly permitting any adaptation for a specific changing in the application environment. The analysis technique, mainly, depends on the Fourier analysis based methods of spectral analysis with the necessary required preconditioning processes. The software required for waveform analysis has been prepared. The spectrum of the waveform has been displayed, and the instrument accuracy has been checked.
... Show More