
 

Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 17, 805 - 820 
 
 

Pre-Topology Generated by  
 

the Short Path Problems 
 
 

M. Shokry 
 

Department of Physics and Mathematics 
Faculty of Engineering, Tanta University, Tanta, Egypt 

 mohnayle@yahoo.com 
 

Y. Y. Yousif 
 

Department of Mathematics 
Faculty of Education Ibn-Al-Haitham 
Baghdad University, Baghdad, Iraq 

yoyayousif@yahoo.com 
 

Abstract 
Let G be a graph, each edge e of which is given a weight w(e). The 

shortest path problem is a path of minimum weight connecting two specified 
vertices a and b, and from it we have a pre-topology. Furthermore, we study the 
restriction and separators in pre-topology generated by the shortest path problems. 
Finally, we study the rate of liaison in pre-topology between two subgraphs. It is 
formally shown that the new distance measure is a metric 
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1 Introduction and Preliminaries 

The field of graph theory has undergone tremendous growth during the 
past century. As recently as fifty years ago, the graph theory community has few 
members and most were in Europe and North America; today there are hundreds  
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of graph theorists and they span the globe. By the min-1970s, the field had 
reached the point where we perceived the need for a collection of surveys of the 
areas of graph theory: the result was our three-volume series selected Topics in 
Graph Theory, comprising articles written by distinguished experts in a common 
style. During the past quarter-century, the transformation of the subject has 
continued, with individual areas (such as topological graph theory) expanding to 
the point of having important sub-branches themselves. This inspired us to 
conceive of a new series of papers, each a collection of articles within a particular 
area written by experts within that area and this paper one of these series. The 
basic idea is that such structure can get pre-topological spaces by using closure 
operators on the short path problem. 

A graph [10], G = (V(G), E(G)) consists of a vertex set V(G) and an edge 
set E(G) of unordered pairs of elements of V(G). To avoid ambiguities, we 
assume that the vertex and edge sets are disjoint. We say that two vertices v and w 
of a graph G are adjacent if there is an edge of the form vw joining them, and the 
vertices v and w are then incident with such an edge. A subgraph [8], of a graph G 
is a graph, each of whose vertices belong to V(G) and each of whose edges belong 
to E(G). Two graphs G and G* are said to be isomorphic [10] if there are 
bijections correspondence between the vertices of G and those of G* such that the 
number of edges joining any two vertices of G is equal to the number of edges 
joining the corresponding vertices of G*. A walk [5], is a "way of getting from 
one vertex to another", and consists of a sequence of edges, one following after 
another. A walk in which no vertex appears more than once is called a path. A 
graph is connected [3], if its cannot be expressed as the union of two graphs, and 
disconnected otherwise For other notions or notations in topology not defined 
here we follow closely [3, 9]. 
 
The Short Path Problem 1.1. [1] 

With each edge e of G let there be associated a real number w(e), called its 
weight. Then G, together with these weights on its edges, is called a weighted 
graph. 
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figure 1.1. A (v1, v4)-path of minimum weight 
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Weight graphs occur frequently in application of graph theory. In the 
friendship graph, for example, weights might indicate intensity of friendship; in 
the communications graph, they could represent the construction or maintenance 
costs of the various communication links. 

If H is a subgraph of a weighted graph, the weight w(H) of H is the sum of 
the weights ∑e∈w(H)w(e) an its edge. Many optimization problems amount to 
finding, in a weighted graph, a subgragh of a certain type with minimum (or 
maximum) weight. One such is the shortest path problem: given a railway 
network connecting various towns, determine a shortest route between two 
specified towns in the network. 

Here one must find, in a weighted graph, a path of minimum weight 
connecting two specified vertices a and b; the weights represent distances by rail 
between directly-linked towns, and are therefore non-negative. The path indicated 
in the graph of figure(1) is a (v1, v4)-path of minimum weight. 
 We now present a pre-topology and algorithm for solving the shortest path 
problem. For clarity of exposition, we shall refer to the weight of a path in a 
weighted graph as its length; similarly the minimum weight of a (v, u)-path will 
be called the distance between v and u and denoted by d(v, u). These definitions 
coincide with the usual notions of length and distance. 

It clearly suffices to deal with the shortest path problem for the simple 
graphs; so we shall assume here that G is simple. We shall also assume that all the 
weights are positive. This, again, is not a serious restriction because, if the weight 
of an edge is zero, then its ends can be identified. We adopt the convention that 
w(v,u)=∞ if vu∉E. 
Dijkstra's Algorithm for shortest path 

Given a connected graph G = (V(G), E(G)) with vertices 1, … ,n and 
edges (i, j) having weighted wij > 0, this algorithm determines the weights of 
shortest paths from vertex 1 to the vertices 2, …  ,n. 
INPUT: Number of vertices n, edges (i, j), and weights wij 
OUTPUT: Weights Wj of shortest paths 1 → j, j = 2, 3,  …  ,n 
1. Initial step 

Vertex 1 get PW : W1 = 0 
Vertex j ( = 2, …  ,n) gets TW : W*j = w1j ( = ∞ if there is no edge (i, j) in G). 
Set PL = {1}, TL = {2, 3, …  ,n}. 

2. Fixing a permanent labeled 
Find a k in TL for which W*k is minimum, set Wk = W*k. Take the smallest k 
if there are several. Delete k from TL and in dude it in PL. 
If TL = φ (that is, TL is empty) then 
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OUTPUT W2, …  , Wn. Stop. 
Else continue (that is, go to step 3). 

3. Updating temporary labels 
For all j in TL, set W*j = mink {W*j, Wk + wkj} (that is, take the smallest of 
W*j and Wk + wkj as your new W*j). 
Go to step 2. 

End Dijkstra 
2 j-pre-Topology Generated by The Short Path Problems; j = 1,2 

In the following Hi denotes the subgraph Hi =(V(Hi), E(Hi)) which is 
represent the subgraph in step i for the shortest path problem of a graph G = 
(V(G), E(G)), He denotes the subgraph He = (V(He), E(He)) which is represent the 
subgraph in end step for the shortest path problem, and τi will be used for a family 
of subgrahs of the power set of P(V(Hi)) obtained by closure operators Cl(K) 
where K ⊆ Hi. 
 
Definition 2.1. Let G = (V(G), E(G)) be a connected graph, a 1-pre-topology on a 
subgraph Hi of a shortest path problem in step i of a graph G is a family 1-τi = {1-
Cl(K) : K ⊆ Hi} ⊆ P(V(Hi)) where 1-Cl(K) = {k ∈ K : (k, h)-shortest path, h ∈ 
Hi} together V(G). The elements of 1-τi are called 1-open subgraphs of the 1-pre-
topology in step i. 
 
Definition 2.2. Let G = (V(G), E(G)) be a connected graph, a 2-pre-topology on a 
subgraph Hi of a shortest path problem in step i of a graph G is a family 2-τi = {2-
Cl(K) : K ⊆ Hi} ⊆ P(V(Hi)) where 2-Cl(K) = V(K) ∪ {k ∈ K : (k, h)-shortest 
path, h ∈ Hi} together V(G). The elements of 2-τi are called 2-open subgraphs of 
the 2-pre-topology in step i. 
 
 This notations is close to the classical notation of topology. pre-topologies 
differ from topologies in that they do not require the open subgraphs to be stable 
with respect to finite intersection. Furthermore, there exists the maximal open 
subgraph denoted as max(j-τi) in j-τi : j = 1, 2. 
 The complement of j-open subgraph is called j-closed subgraph. The j-
interior of subgraph K is j-Int(V(K)) = ∪{V(O) : O is j-open subgraph, V(O) ⊆ 
V(K)}, and the j-closure of subgraph K is j-Cl(V(K)) = ∩{V(F) : F is j-closed 
subgraph, V(K) ⊆ V(F)} where j = 1, 2. 
 
Example 2.1. Consider the graph in figure 1.1.  
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Here one must find, in a weighted graph, a path of minimum weight connecting 
two specified vertices a and d. 
 

  v1 v2 v3 v4 v5 v6 Max(1-τi) 
Step.0  -- -- -- -- -- -- φ 
Step.1 v1 -- 2 ∞ ∞ 6 8 {v1, v2} 
Step.2 v2 -- -- 1 ∞ ∞ 5 {v1, v2, v3} 
Step.3 v3 -- -- -- 9 ∞ 3 {v1,v2,v3,v6} 
Step.4 v6 -- -- -- 2 4 -- {v1,v2,v3,v6,v4} 

 
If H0 = {v1} , then 1-τ0 = {V(G), φ} 
If H1 = {v1, v2} , then 1-τ1 = {V(G), φ, {v1, v2}} 
If H2 = {v1, v2, v3} , then 1-τ2 = {V(G),φ,{v1,v2}, {v2, v3},{v1, v2, v3}}, 
If H3 = {v1, v2, v3, v6} , then 1-τ3 = {V(G), φ, {v1, v2}, {v2, v3},{v3, v6}, 

{v1, v2, v3}, {v1, v2, v6}, {v2, v3, v6}, {v1, v2, v3, v6}} 
If H4 ={v1,v2,v3,v6,v4} , then 1-τ4 = {V(G), φ,{v1,v2},{v2,v3},{v3,v6},{v6,v4} 

,{v1,v2,v3},{v1,v2,v3,v6},{v1,v2,v6,v4},{v1,v2,v4}, 
{v2,v3,v6},{v2,v3,v6,v4},{v2,v3,v6},{v3,v6,v4}, 
{v1,v2,v3,v6,v4},{v1,v2,v3,v4}}. 

 
Example 2.2. Consider the graph in figure 1.1. 
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Here one must find, in a weighted graph, a path of minimum weight connecting 
two specified vertices a and d. 
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  v1 v2 v3 v4 v5 v6 Max(2-τi) 
Step.0  -- -- -- -- -- -- {v1} 
Step.1 v1 -- 2 ∞ ∞ 6 8 {v1, v2} 
Step.2 v2 -- -- 1 ∞ ∞ 5 {v1, v2, v3} 
Step.3 v3 -- -- -- 9 ∞ 3 {v1, v2, v3, v6} 
Step.4 v6 -- -- -- 2 4 -- {v1,v2,v3,v6,v4} 

 
If H0 = {v1} , then 2-τ0 = {V(G), φ, {v1}} 
If H1 = {v1, v2} , then 2-τ1 = {V(G), φ, {v1, v2}, {v2}} 
If H2 = {v1, v2, v3} , then 2-τ2 = {V(G),φ,{v1,v2},{v2,v3},{v3},{v1,v2,v3}} 
If H3 = {v1, v2, v3, v6} , then 2-τ3 = {V(G),φ,{v1, v2}, {v2, v3},{v3, v6}, {v6}, 

{v1,v2 ,v3}, {v1, v2, v3, v6}, {v2, v3, v6}, {v1, v2, v6}} 
If H4 ={v1,v2,v3,v6,v4} , then 2-τ4 ={V(G),φ,{v1,v2},{v2,v3},{v3,v6},{v6,v4}, 

{v4},{v1, v2,v3},{v1,v2,v3,v6},{v1,v2,v6,v4},{v1,v2,v4}, 
{v2,v3,v6}, {v2,v3, v6,v4},{v2,v3, v6},{v3,v6,v4}, 
{v1,v2,v3,v6,v4},{v1,v2,v3,v4}}. 

 
Remark 2.1. From above example we have 
1-τ0 ⊆ 1-τ1 ⊆ ...    ⊆ 1-τe 
 
Proposition 2.1. Let G = (V(G), E(G)) be a connected graph, and Hi = (V(Hi), 
E(Hi)), Hi+1 = (V(Hi+1), E(Hi+1)) are subgraphs in G represent the steps i, i+1in the 
shortest path problem such that Hi ⊆ Hi+1, then 1-τi ⊆ 1-τi+1.  
Proof. Clear. 
 
Definition 2.3. An 2-pre-topology 2-τ1  is called 2-pre-subtopology of a 2-pre-
topology 2-τ2 if for each 2-open subgraph O1 ∈ 2-τ2, there exists 2-open subgraph 
O ∈ 2-τ1 such that O ⊆ O1. and denoted by 2-τ1 ⊆s 2-τ2. 
 
Remark 2.2. From above definition and example 2.2 we have 
2-τ0 ⊆s 2-τ1 ⊆s ...    ⊆s 2-τe. 
Proposition 2.2. Let G=(V(G), E(G)) be a connected graph, and Hi=(V(Hi), 
E(Hi)), Hi+1 = (V(Hi+1), E(Hi+1)) are subgraphs in G represent the steps i, i+1in the 
shortest path problem such that Hi ⊆ Hi+1, then 1-τi ⊆s 1-τi+1.  
Proof. Clear. 
 
Definition 2.5. Let G = (V(G), E(G)) be a connected graph and Hi = (V(Hi), 
E(Hi)) be a subgraph  represented the shortest path problem in step i. The 1-
dependency (resp. 2-dependency) of a vertices of Hi on G with respect to 1-pre- 
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topology (resp. 2-pre-topology) is denoted by 1-Di(V(Hi)) (resp. 2-Di(V(Hi)) ) and 
defined as follows: 

1-Di(V(Hi)) = 
|)G(V|

|))H(V(Int1| i−  (resp. 2-Di(V(Hi)) = 
|)G(V|

|))H(V(Int2| i−  ) 

Example 2.5. From examples 2.1 and 2.2, we have: 
1-D0(V(H0)) = 0/6 = 0, 1-D1(V(H1)) = 2/6 = 1/3, 1-D2(V(H2)) = 3/6 =1/2, 1-
D3(V(H3)) = 4/6 = 2/3, 1-D4(V(H4)) = 5/6. 
2-D0(V(H0)) = 1/6, 2-D1(V(H1)) = 2/6, 2-D2(V(H2)) = 3/6 = 1/2, 2-D3(V(H3)) = 
4/6 = 2/3, 2-D4(V(H4)) = 5/6. 
 
Remark 2.3. 
(a) 1-D0(V(H0)) ≤ 1-D1(V(H1)) ≤ …  ≤ 1-De(V(He)) 
(b) 2-D0(V(H0)) ≤ 2-D1(V(H1)) ≤ …  ≤ 2-De(V(He)) 
 
Proposition 2.3. Let G = (V(G), E(G)) be a connected graph, and Hi, Hi+1 be a 
subgraphs in G represent of the shortest path problem in steps i, i+1, then 
(a) 1-Di(V(Hi)) ≤ 1-Di+1(V(Hi+1)) for every i = 0, 1, … , e-1. 
(b) 2-Di(V(Hi)) ≤ 2-Di+1(V(Hi+1)) ≤ for every i = 0, 1, … , e-1. 
Proof. The proofs of the two facts are similar; so, we will only proof the fact (a). 
Let Hi, Hi+1 be a subgraphs in G represent the shortest path problem of steps i, 
i+1: i = 0, 1, … , e-1. Since V(Hi) ⊆ V(Hi+1) for every i = 0, 1, … , e-1, implies 1-
Int(V(Hi)) ⊆ 1-Int(V(Hi+1)), then |1-Int(V(Hi))| ≤ |1-Int(V(Hi+1))| and  

|)G(V|
|))H(V(Int1| i−  ≤ 

|)G(V|
|))H(V(Int1| 1i+− . 

Hence 1-Di(V(Hi)) ≤ 1-Di+1(V(Hi+1)) for every i = 0, 1, … , e-1. 
 
Proposition 2.4. Let G = (V(G), E(G)) be a connected graph, and He be a 
subgraph in G represent of the shortest path problem in end step such that V(He) = 
V(G), then j-De(V(He)) = 1. 
Proof. Clear. 
 
Example 2.6. In examples 2.1 and 2.2. If we take the shortest path, P = 
v1v2v3v6v4, then. 
1-D0(V(P)) = 0/6 = 0, 1-D1(V(P)) = 2/6 = 1/3, 1-D2(V(P)) = 3/6 =1/2, 1-D3(V(P)) 
= 4/6 = 2/3, 1-D4(V(P)) = 5/6. 
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2-D0(V(P)) = 1/6, 2-D1(V(P)) = 2/6, 2-D2(V(P)) = 3/6 = 1/2, 2-D3(V(P)) = 4/6 = 
2/3, 2-D4(V(P)) = 5/6. 
 
Corollary 2.1. Let G = (V(G), E(G)) be a connected graph, and P be a shortest 
path of end step on G, then. 
(a) 1-D0(V(P)) ≤ 1-D1(V(P)) ≤ …   ≤  1-De(V(P)). 
(b) 2-D0(V(P)) ≤ 2-D1(V(P)) ≤ …   ≤  2-De(V(P)). 
Example 2.7. In examples 2.1 and 2.2. If the vertices of the shortest path 
(subgraphs) in step i are, V(H1) = v1v2, V(H2) = v2v3v6, and V(H1) ∪ V(H2) = 
v1v2v3v6, then. 
1-D3(V(H1)) = 2/6 = 1/3, 1-D3(V(H2)) = 3/6 = 2/3, 1-D3(V(H1) ∪ V(H2)) = 4/6 
=2/3, and 
2-D3(V(H1)) = 2/6 = 1/3, 2-D3(V(H2)) = 3/6 = 2/3, 2-D3(V(H1) ∪ V(H2)) = 4/6 
=2/3, 
Notes that, j-D3(V(H1) ∪ V(H2)) ≤ j-D3(V(H1)) + j-D3(V(H2)) ; j = 1, 2. 
Also, 
If the vertices of the shortest path (subgraphs) in step i are, V(H1) = v1v2v3, V(H2) 
= v2v3v6, and V(H1) ∩ V(H2) = v2v3, then. 
1-D3(V(H1)) = 3/6 = 1/3, 1-D3(V(H2)) = 3/6 = 2/3, 1-D3(V(H1) ∩ V(H2)) = 2/6 
=1/3, and 
2-D3(V(H1)) = 3/6 = 1/2, 2-D3(V(H2)) = 3/6 = 2/3, 2-D3(V(H1) ∩ V(H2)) = 2/6 
=1/3, 
Notes that, j-D3(V(H1) ∩ V(H2)) ≤ j-D3(V(H1)) + j-D3(V(H2)) ; j = 1, 2. 
 
Remark 2.3. Let G = (V(G), E(G)) be a connected graph, Hh, Hk be two 
subgraphs  represented the shortest path problem of steps h, k respectively, then. 
(a) j-Di(V(Hh) ∪ V(Hk)) ≤ j-Di(V(Hh)) + j-Di(V(Hk)) ; j = 1, 2 , i = 0, 1, ...  , e-1. 
(b) j-Di(V(Hh) ∩ V(Hk)) ≤ j-Di(V(Hh)) + j-Di(V(Hk)) ; j = 1, 2 , i = 0, 1, ...  , e-1. 
 If we take two paths has the same initial vertex and the other vertices of first 
path inside the step i and the other vertices of second path outside step i, to 
illustrate this idea take the following example: 
 
Example 2.8. In examples 2.1 and 2.2. 
In particular take 1-τ3 and paths P = v1v2, P* = v1v6v2, then. 
1-D1(V(P)) = 2/6 = 1/3, and 1-D1(V(P*)) = 2/6 = 1/3. 
Also. In 1-τ2 and paths P = v1v2v3, P* = v1v6v3, then. 
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1-D2(V(P)) = 3/6 = 1/2, and 1-D2(V(P*)) = 0. 
Also. In 1-τ3 and paths P = v1v2v3v6, P* = v1v6 or v1v5v6, then. 
1-D3(V(P)) = 4/6 = 2/3, and 1-D3(V(P*)) = 0. 
Also. In 1-τ4 and paths P = v1v2v3v6v4, P* = v1v5v6, then. 
1-D4(V(P)) = 5/6 = 1/3, and 1-D4(V(P*)) = 0. 
 
Remark 2.4. If we take two paths has the same initial vertex and the other 
vertices of first path P inside the step i and the other vertices of second path P* 
outside step i, we have  j-Di(V(P*)) ≤ j-Di(V(P)) ; j = 1, 2 , i = 0, 1, ...  , e-1. 
 
 
3 Restriction and Separators in pre-Topology Generated by The 

Short Path Problems 
 

We will denote by τ for 1-τ or 2-τ, and τe to a pre-topology on He. 
 
Definition 3.1. (Restricting). Let τe be j-pre-topology on He. Restricting τe on Hi 
means considering a j-pre-topology on Hi which is naturally related to τe, and it 
denoted by τe| Hi . By definition, τe| Hi  consists of sets of the form U ∩ Hi, where 
U ∈ τe. In other words, open sets in Hi are the traces on Z of open sets in G. It is 
clear that τe| Hi is an pre-topology. 
 
Definition 3.2. (Separators). A subgraph Hi ⊆ He is a separators for τe if U 

∩ Hi is open subgraph for every open subgraph U; that is , U ∈ τe implies U ∩ Hi 

∈ τe. An equivalent formulation of the condition is τe| Hi ⊆ τe. 
 
Example 3.1. 
(a) The empty subgraph and He are trivial separators. 
(b) An open singleton subgraph is a separator. 
(c) The maximal open subgraph max(τe) is a separator. 

(d) If Hi does not intersect max(τe), then Hi is a separator. 

(e) If τe is a topology, the set of separators for τe coincides with τe. 
 
Lemma 3.1. Let τe be a pre-topology on He. 
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(a) Suppose that Hi ⊆ He is a separator for τe. Then, for any Hk ⊆ He, the 

subgraph Hi ∩ Hk is a separator for τe| Hi . 
(b) Suppose that Hi ⊆ He is a separator for τe and Hk ⊆ He is a separator for τe| Hi . 

Then Hk is a separator for τe. 
Proof. (a) Let O be an open subgraph in Hk (with respect to τe| Hk ). We have to 
check that O ∩ ( Hi ∩ Hk) is in τe| Hk . By definition, O = U ∩ Hk for some U ∈ τe. 
Therefore O ∩ ( Hi ∩ Hk) = (U ∩ Hi) ∩ Hk. Since Hk is a separator for τe, the set 
U ∩ Hi is in τe. Hence (O ∩ Hi) ∩ Hk is in τe| Hk . 
(b) It holds that τe| Hk  = (τe| Hi )| Hk  ⊆ τe| Hi  ⊆ τe. 

The following proposition tell us that the set of separators always is a 
topology. 
 
Proposition 3.1. 
(a) Intersection of a finite family of separators is a separator. 
(b) Union of any family of separators is a separator. 
Proof. (a) It suffices to consider the case of two separators subgraphs H1 and H2. 
Let U ∈ τe. Since H1 is a separator, U ∩ H1 ∈ τe. Since H2 is a separator, U ∩ ( 

H1 ∩ H2) = (U ∩  H1) ∩ H2 ∈ τe. 
(b) Let {Hi} be a family of separators, and H = ∪i Hi. Let U ∈ τe. Since Hi is a 

separators, U ∩ Hi ∈ τe. As the union of open subgraphs, U ∩ ( ∪i Hi) = ∪i (U ∩ 
Hi) is an open subgraph. 
 

The set of Sep(τe) of separators for τ thus is a topology on He. In general, 
this topology is incompatible with τe. (though, if the subgraph He is open, each 
separator is open and Sep(τe) ⊆ τe). Separators allow decomposing τe in to finer 
parts. An appreciation for the decomposing issue can be gained by considering the 
following simple case; later on we shall discuss a more general setting. 
 
Decomposition: Suppose that τe is a pre-topology on He, Hi ⊆ He, and Y = He \ 
Hi. In general, the restriction τe| Hi  and τe| Y do not determine the pre-topology τe. 
To reconstruct τe we consider, for every open subgraph O ∈ τe| Hi , τO = { U ⊆ Y : 
O ∪ U ∈ τe}, in P(Y). ( Note that τO ⊆ τe| Y ). 
 
Lemma 3.2. Let Hi be a separators for τe. Then: 
(a) For every O ∈ τe| Hi , τO is a pre-topology on Hi. 
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(b) τO is isotonic in O ∈ τe| Hi . 
Proof. (a) It holds that φ ∈ τO, that is, O = O ∪ φ is open with respect to τe. We 
now use the fact that Hi is a separator for τe; since O ∈ τe| Hi , we have  O ∈ τe. 
The proof for τO being stable with respect to arbitrary union is straightforward 
(and does not require Hi to be a separator). 
(b) Suppose U ∈ τO and O ⊆ W ∈ τe| Hi . We have to show that U ∈ τW. Since U 
∈ τO, O ∪ U is open subgraph in He. Since W ∈ τe| Hi  and Hi is a separator for τe, 
W is open subgraph in He as well. Hence, their union (O ∪ U) ∪ W = (O ∪ W) ∪ 
U = W ∪ U is open subgraph in He, and U ∈ τW. 
 

These data (the pre-topology τe| Hi on Hi and the isotone family (τO, O ∈ 
τe| Hi ) of pre-topologies on He \ Hi) allow us to restore the initial pre-topology τe. 
Namely τe = {O ∪ U ⊆ Y, where O ∈ τe| Hi and U ∈ τO}. 
Indeed, O ∪ U belongs to τe (by definition of τO). Conversely, if W ∈ τe, then W 
= (W ∩ Hi) ∪ (W \ Hi), W ∩ Hi ∈ τe| Hi , and W \ Hi ∈ τW∩H

i
. 

 
Synthesis: Conversely, suppose we have the following data: 
(a) A pre-topology τi on Hi, and 
(b) For every O ∈ τi, a pre-topology τO on He \ Hi such that the correspondence O 

→ τO is isotone. 
Give these data we define the following collection τe of subgraph of He, 
τe = {O ∪ U, where O ∈ τi and U ∈ τO}. 
 
Proposition 3.2. 
(a) τe is a pre-topology on He, 
(b) It holds that τe| Hi = τi, 
(c) Hi is a separator for τe, 
(d) For every O ∈ τe| Hi ,τO = {U ∈ He \ Hi, such that O ∪ U ∈ τe}. 
Proof. (a) Let {Oi ∪ Ui} be a family of subgraph in τe. Since τi is stable with 
respect to union, O = ∪iOi is in τi. Even Ui is in τOi; since Oi ⊆ O, τOi ⊆ τO and Ui 
∈ τO. As τO is stable with respect to unions, ∪iUi ∈ τO, and consequently, O ∪ 
(∪iUi) ∈ τe. 
(b) The inclusion τe| Hi ⊆ τi is obvious; the inverse inclusion follows from φ ∈ τO. 
This prove (b), and the inclusion τi ⊆ τe implies (c). 
(d) This statement is obvious. 
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This assembly construction thus is the reverse to the previously considered 

decomposition. One can say that τe is the semi-direct sum of the pre-topology τe 
and the family {τO : O ∈ τi}. If both Hi and Y = He \ Hi are separators, τe is the 
direct sum of the pre-topology τe| Hi and τe| Y . 
 

Antimatroids are special pre-topologies. In terms of closed sets (i.e., 
complements of open sets) they are known as the so-called convex geometries; 
see Theorem 1.3 in chapter 3 of Korte, Lovasz, and Schrader (1991) [5]. The 
following definition more appropriate for the purposes of this note as it directly 
refers to open subgraphs. 
 
Definition 3.3. An Antimatroid on a subgraph He is a pre-topology τe on He 
possessing the following property: for every non-empty open subgraph U ∈ τe, a 
vertex v ∈ U exists such that the subgraph U \ {v} is open as well. 
 

In the following we will write U \ v instead of U \ {v}. Antimatroids 
possess a property formally stronger than the property given in the definition. 
 
Lemma 3.3. Let τe be an antimatroids on He, and let O 

≠
⊂  U be two distinct open 

subgraphs. Then a vertex v ∈ U \ O exists such that U \ v is open. 
Proof. We shall use an induction on the size of the subgraph U \ O. If U \ O 
consists of a single vertex, the assertion of the lemma is obviously true. For the 
general case, let v be an arbitrary vertex of U \ O. Let Uv ⊆ U be a minimal open 
subgraph containing the vertex v. 

Note that the subgraph Uv \ v is open. This is obvious if Uv = {v}. 
Otherwise, there exists u ∈ Uv such that Uv \ u is open subgraph. If u ≠ v, then Uv 
\ u is a proper subgraph of Uv containing the vertex v, This contradicts the 
minimality of Uv. Hence u = v.  

Consider now two cases. If Uv ∪ O = U, then U \ v = (Uv \ v) ∪ O, as the 
union of the open subgraphs Uv \ v and O, is open subgraph. If O*= Uv ∪ O is 
strictly smaller than U, we obtain the pair of open subgraphs O* ⊆ U with strictly 
smaller difference U \ O*. By the induction assumption, there exists a vertex v* ∈ 
U \ O* such that U \ v* is open subgraph. 
 
4 Rate of Liaison in pre-topology between Two Subgraphs 

In this section, we will study the rate of liaison in pre-topology between 
two subgraphs. It is formally shown that the new distance measure is a metric 
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Definition 4.1. Let G be a non-empty graph, and H1, H2 are two non-empty 
subgraphs of G, the rate of liaison between H1, H2 in G is denote by R(H1, H2) and 
defined as: 

R(H1, H2) = 
|)H||,Hmax(|

|HH|
21

21 ∩  

Where | G | denote the number of vertices of G. 
 
Example 4.1. From example 2.2. we have 
R(H1, H1) = 2/2 =1, R(H1, H2) = 2/3, R(H1, H3) = 2/4 = 1/2, R(H1, H4) = 2/5, 
R(H2, H2) = 3/3 =1, R(H2, H3) = 3/4, R(H2, H4) = 3/5, 
R(H3, H3) = 4/4 = 1, R(H3, H4) = 4/5,  
R(H4, H4) = 5/5 =1. 
 
Remark 4.1. 
(a) R(Hi, Hi) = 1 for all subgraph Hi of G. 
(b) R(Hi, Hj) = 0 if Hi ∩ Hj = φ. 
(c) R(Hi, Hk) ≤ R(H1, Hj)  for all Hi ⊆ Hj ⊆Hk. 
(d) R(Hi, Hk) ≤ R(Hj, Hk) for all Hi ⊆ Hj ⊆Hk. 
 
Theorem 4.1. Let H1, H2, and H3 be any graphs. The following properties holds 
true. 
(a) 0 ≤ R(H1, H2) ≤ 1, 
(b) R(H1, H2) = 1 if and only if H1and H2 are isomorphic to each other, 
(c) R(H1, H2) = R(H2, H1), 
(d) R(H1, H3) ≤ R(H1, H2) + R(H2, H3). 
Proof. (a) Since H1 ∩ H2 ⊆ H1 and  H1 ∩ H2 ⊆ H2, then | H1 ∩ H2| ≤ | H1| and | H1 
∩ H2| ≤ | H2|, so | H1 ∩ H2| ≤  max(| H1|, | H2|), and 

0 ≤ 
|)H||,Hmax(|

|HH|
21

21 ∩
≤ 1. Hence 0 ≤ R(H1, H2) ≤ 1. 

(b) R(H1, H2) = 1 if and only if 
|)H||,Hmax(|

|HH|
21

21 ∩ = 1 

                       if and only if  | H1 ∩ H2| =  max(| H1|, | H2|) 
                       if and only if  | H1| = | H2| 
                       if and only if H1 and H2 are isomorphic to each other. 
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(c) R(H1, H2) = 
|)H||,Hmax(|

|HH|
21

21 ∩  = 
|)H||,Hmax(|

|HH|
12

12 ∩ = R(H2, H1). 

(d) In the following proof of the triangle we distinguish two case: 
Case 1. The graphs H1 ∩ H2 and H2 ∩ H3 are disjoint, or speaking more 

strictly, the Intersection of H1 ∩ H2 and H2 ∩ H3 is empty. (Figer.1) 
 
 
 

 
 
 
 
 
           G1                                                G2                                              G3 
 
Figure 4.1. Illustration of disjoint and overlapping intersection subgraphs: the intersection 
subgraphs H1 ∩ H2 = h12, H1 ∩ H3 = h13, H2 ∩ H3 = h23 are disjoint. 
 
 
Let I12 = | H1 ∩ H2|, I23 = | H2 ∩ H3|, and I13 = | H1 ∩ H3|. Then the following 
relation holds true. 
I12 + I23 ≤ | H2|.  -------- (1) 
Property (d) is equivalent to the following inequality: 

|)H||,Hmax(|
I

21
12  + 

|)H||,Hmax(|
I

32
23  ≥ 

|)H||,Hmax(|
I

31
13 -------- (2) 

We will show that the left-hand side of this inequality is always smaller or equal 
to (1). Which is equivalent to: 
max(| H1|, | H2|) - max(| H2|, | H3|) ≥ I12 max(| H2|, | H3|) + I23 max(| H1|, | H2|) ---(3) 
We proceed by a simple case analysis. 

Case 1.a: | H1| ≥ | H2| ≥ | H3|. Here Eq.(3) is equivalent to 
| H1| | H2| ≥ I12 | H2| + I23 | H1| -------- (4) 
From Eq.(1) we conclude that 
| H1| | H2| ≥ I12 | H1| + I23 | H1| ≥ I12 | H2| + I23 | H1|. 

Case 1.b: | H1| ≥ | H3| ≥ | H2|. Here Eq.(3) become 
| H1| | H3| ≥ I12 | H3| + I23 | H1| -------- (5) 
Using Eq.(1) again we conclude 
| H1| | H3| ≥ | H1| | H2| ≥ I12 | H1| + I23 | H1| ≥ I12 | H3| + I23 | H1|. 
 

h13 

h12 h12 

H23 

h23 

h13 
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The remaining four cases | H2| ≥ | H1| ≥ | H3|, | H2| ≥ | H3| ≥ | H1|, | H3| ≥ | H1| ≥ | 
H2|, and | H3| ≥ | H2| ≥ | H1| can be shown similarly. 

Case 2. Here we assume that the intersection of H1 ∩ H2 and H2 ∩ H3 is 
not empty (Figer.2) 
 
 
 
 
 
           G1                                                G2                                              G3 
Figure  4.2. Illustration of disjoint and overlapping intersection subgraphs: H1 ∩ H2 and H2 ∩ H3  
share an intersection subgraph h i.e., h = (H1 ∩ H2) ∩(H2 ∩ H3). 
Let I = | (H1 ∩ H2)∩ (H2 ∩ H3)| > 0. It follows that  | H1 ∩ H3| ≥ I. 
Furthermore it follows that  
I12 + I23 - I ≤ | H2|, I ≤ I12, I ≤ I23 -------- (6) 
We will show that 

|)H||,Hmax(|
I

21
12  + 

|)H||,Hmax(|
I

32
23  ≥ 

|)H||,Hmax(|
I

31 -------- (7) 

Which implies property (d). Obviously inequality (7) is equivalent to 
I12 max(| H2|, | H3|) max(| H1|, | H3|) + I23 max(| H1|, | H2|) max(| H1|, | H3|) 
 ≥ I max(| H1|, | H2|) max(| H2|, | H3|) -------- (8) 
Again we proceed by case analysis. 

Case 2.a: | H1| ≥ | H2| ≥ | H3|. Here Eq.(8) is equivalent to 
I12 | H2| | H1| + I23 | H1| | H1| ≥ I | H1| | H2| 
Which can be simplified to 
I12 | H2| + I23 | H1| ≥ I | H2| -------- (9) 
From Eq.(6) if follows that 
I12 + I23 ≥ 2 I ≥ I 
I12 | H2| + I23 | H1| ≥ I12 | H2| + I23 | H2| ≥ I | H2| 
From which we get Eq.(9) 

Case 2.b: | H1| ≥ | H3| ≥ | H2|. Here Eq.(8) become. 
I12 | H3| | H1| + I23 | H1| | H1| ≥ I | H1| | H3| 
Which can be simplified to 
I12 | H3| + I23 | H1| ≥ I | H3| -------- (10) 
We proceed by analogously to case 2.a. 
I12 | H3| + I23 | H1| ≥ I12 | H3| + I23 | H3| ≥ I | H3| -------- (11) 
The remaining cases can be shown similarly. 
 

h12 

h 

h12 

h          h23 

h          h23 
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Remark 4.1. From theorem above it follows in particular that our proposed rate of 
liaison is a metric. 
 
 

5  Discussion and conclusion 

We have shown that the graph distance measure of  Definition 4.1 is in 
fact a metric. As discussed earlier it is often difficult to form a metric from edit 
distance measures. Therefore in applications where the properties of a metric are 
important, the intersection subgraph metric could be used. 

One application where this is important is information retrieval from 
images and video databases Chang et al., 1987 [2], Lee and Hsu, 1992[6], Shearer 
et al., 1997 [7]. This area relies heavily on browsing to locate required database 
elements. Thus it is necessary for the distance measure chosen to be ‘‘well 
behaved’’ to allow sensible navigation of the database. The use of a metric, such 
as that proposed, for the distance measure ensures that the behavior of the 
similarity retrieval will be consistent and comprehensible, aiding the user in their 
search task. 
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