Preferred Language
Articles
/
bsj-8564
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 15 2021
Journal Name
Iraqi National Journal Of Nursing Specialties
Feeding Behaviors of Children with Autism Spectrum Disorder in Baghdad City
...Show More Authors

Objective(s): To assess the behavior that impedes the eating of children with autism spectrum disorders in Baghdad city, and find out the relationships between the behaviors that impede eating of autistic children and their demographic characteristics.
Methodology: The study started from the period of 16th September 2019 to the 16th of March 2020. A non-probability (purposive) sample of 80 children with autism spectrum disorders was selected. The questionnaire was designed and composed of two parts: the first part includes the autistic children demographic data, the second part includes scales of behavior that impede eating followed by parents towards autistic child. The reliability of the questionnaire was determined through a pilot

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Classification of Arabic Alphabets Using a Combination of a Convolutional Neural Network and the Morphological Gradient Method
...Show More Authors

The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Wed Mar 16 2022
Journal Name
Journal Of Educational And Psychological Researches
Awareness of Diagnosing Autism Spectrum Disorders and Social (Pragmatic) Communication Disorder among Student Teachers According to Some Variables
...Show More Authors

The research aims to identify the level of awareness of student teachers in the behavioral disorders and autism specialization about the diagnosing Autism Spectrum Disorder and Social (Pragmatic) Communication Disorder according to some variables. The study was conducted on a sample of (113) student teachers. The researcher employed the awareness scale of a teacher-screening questionnaire for autism spectrum disorder and social pragmatic communication disorder. The results showed that the average of teachers in the total degree of awareness of autism spectrum disorder and social communication have recorded a moderate degree. As for the awareness of autism spectrum disorder was high. Then, the awareness of social communication disorder wa

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 03 2023
Journal Name
Journal Of Educational And Psychological Researches
The Effectiveness of Applying Social Stories in Developing Social Interaction Skills among Children with Autism Spectrum Disorder
...Show More Authors

Abstract

The current research aims to identify the effectiveness of social stories in increasing social interaction among children with an autism spectrum disorder. The researcher used the single-subject design methodology (Single Subject Designs, SSD) with

 (A-B) design to answer the research questions. The study sample consisted of (3) children with autism spectrum disorder enrolled in a transit daycare center in the Asir region, Saudi Arabia. The results of the study showed that there is a positive functional relationship between social stories and play to increase social interaction among children with autism spectrum disorder, which contributed to the acquisition and generalization of this behav

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 07 2023
Journal Name
Journal Of Educational And Psychological Researches
The Contribution of Behavioral Disorders to Predicting Bullying Patterns in a Sample of Adolescents with Autism Spectrum Disorder: College of Education and Arts - Northern Border University - Kingdom of Saudi Arabia.
...Show More Authors

The present study aims to identify the role of behavioral disorders (anxiety disorder, behavior disorder "behavior", confrontation and challenge disorder, aggressive behavior) in predicting bullying patterns (verbal, physical, electronic, school) in a sample of adolescents with autism spectrum disorder. For this purpose, the researcher developed scales to measure the behavioral disorders and the bullying patterns among adolescents with autism spectrum disorder. The researcher adopted the descriptive survey approach. The study sample consists of (80) adolescents with autism spectrum disorder with ages range from (15-19 years) and (45-53 years old) in association with israr association for people with special needs in the northern borders

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (4)
Scopus Crossref
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Wed Aug 17 2022
Journal Name
Al–bahith Al–a'alami
Digital addiction and its Relationship to social isolation among children in the autism Spectrum frome the viewpoint of their parents
...Show More Authors

 This study titled “digital addiction and its relationship to social isolation among children in the autism spectrum from the point of view of their parents” in which the
researcher addressed an important topic which is knowledge of digital addiction in a
child with autism spectrum and its relationship to social isolation in them.
The study aimed to dhed the light on the digital addiction in a spectrum child Autism
from the point of view of their parents، by knowing the extent of addiction of children
in the autism spectrum، and identifying the relationship between electronic addiction and the social isolation of children in the autism spectrum.The study presented
several hypotheses،

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fully Automated Magnetic Resonance Detection and Segmentation of Brain using Convolutional Neural Network
...Show More Authors

     The brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s

... Show More
View Publication Preview PDF
Crossref