We define and study new ideas of fibrewise topological space namely fibrewise multi-topological space . We also submit the relevance of fibrewise closed and open topological space . Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space . Furthermore, we propose and prove a number of statements about these ideas. On the other hand, extend separation axioms of ordinary topology into fibrewise setting. The separation axioms are said to be fibrewise multi-T0. spaces, fibrewise multi-T1spaces, fibrewise multi-R0 spaces, fibrewise multi-Hausdorff spaces, fibrewise multi-functionally Hausdorff spaces, fibrewise multi-regular spaces, fibrewise multi-completely regular spaces, fibrewise multi-normal spaces and fibrewise multi-functionally normal spaces. Also we give many score regarding it.. Furthermore, and show the notions of fibrewise multi-compact, fibrewise locally multi-compact spaces, Moreover, we study relationships between fibrewise multi-compact(resp., locally multi-compac) space and some fibrewise multi-separation axioms. Finally, the concepts are studied fibrewise multi-perfect topological spaces, filter base, contact point, multi-rigid, fibrewise multi-weakly closed, E set, fibrewise almost multi-perfect, multi*-continuous fibrewise multi∗ -topological spaces respectively, multi-Te, locally QHC, In addition, we state and prove several propositions related to these concepts.
The purpose of this paper is to study a new types of compactness in the dual bitopological spaces. We shall introduce the concepts of L-pre- compactness and L-semi-P- compactness .
مجلة العلوم الاقتصادية والإدارية المجلد 18 العدد 69 الصفحات 318- 332 |
The chemical properties of chemical compounds and their molecular structures are intimately connected. Topological indices are numerical values associated with chemical molecular graphs that help in understanding the physicochemical properties, chemical reactivity and biological activity of a chemical compound. This study obtains some topological properties of second and third dominating David derived (DDD) networks and computes several K Banhatti polynomial of second and third type of DDD.
The aim of our work is to develop a new type of games which are related to (D, WD, LD) compactness of topological groups. We used an infinite game that corresponds to our work. Also, we used an alternating game in which the response of the second player depends on the choice of the first one. Many results of winning and losing strategies have been studied, consistent with the nature of the topological groups. As well as, we presented some topological groups, which fail to have winning strategies and we give some illustrated examples. Finally, the effect of functions on the aforementioned compactness strategies was studied.
Historical concepts are among the concepts that are difficult to present to the pre-school child except by using modern techniques, as well as the difficulty of making visits to all historical monuments and going back to antiquity and the lack of studies in this area, therefore, we need an attractive medium that children love which is able to convey some abstract concepts that are difficult to teach to children using traditional methods, and among these activities that the kindergarten provides to children are the stories through which they develop their linguistic wealth, consolidate their religious and spiritual inclinations, refine their correct morals, and form their proper attitudes, knowledge and life concepts.
The
... Show MoreStatistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c
... Show MoreThe primary aim of this paper, is to introduce the rough probability from topological view. We used the Gm-topological spaces which result from the digraph on the stochastic approximation spaces to upper and lower distribution functions, the upper and lower mathematical expectations, the upper and lower variances, the upper and lower standard deviation and the upper and lower r th moment. Different levels for those concepts are introduced, also we introduced some results based upon those concepts.
In this paper, the C̆ech fuzzy soft closure spaces are defined and their basic properties are studied. Closed (respectively, open) fuzzy soft sets is defined in C̆ech fuzzy-soft closure spaces. It has been shown that for each C̆ech fuzzy soft closure space there is an associated fuzzy soft topological space. In addition, the concepts of a subspace and a sum are defined in C̆ech fuzzy soft closure space. Finally, fuzzy soft continuous (respectively, open and closed) mapping between C̆ech fuzzy soft closure spaces are introduced. Mathematics Subject Classification: 54A40, 54B05, 54C05.
Most real-life situations need some sort of approximation to fit mathematical models. The beauty of using topology in approximation is achieved via obtaining approximation for qualitative subgraphs without coding or using assumption. The aim of this paper is to apply near concepts in the -closure approximation spaces. The basic notions of near approximations are introduced and sufficiently illustrated. Near approximations are considered as mathematical tools to modify the approximations of graphs. Moreover, proved results, examples, and counterexamples are provided.