Preferred Language
Articles
/
kRZnJIwBVTCNdQwCpPjS
3D scenes semantic segmentation using deep learning based Survey
...Show More Authors
Abstract<p>Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the power and popular tool for data and image processing in computer vision, used for many applications like “image recognition”, “object detection”, “semantic segmentation”, In this research paper, provide survey a background for many techniques designed to 3 Dimensions point cloud semantic segmentation in different domains on many several available free datasets and also making a comparison between these methods.</p>
Scopus Crossref
View Publication
Publication Date
Sat Jun 30 2012
Journal Name
Al-kindy College Medical Journal
Treatment of Nasopharyngeal Carcinoma by Using Deep X-Ray Therapy
...Show More Authors

Background: Nasopharyngeal carcinoma (NPC) is one of the most challenging tumors because of their relative inaccessibility and that their spread can occur without significant symptoms with few signs, but Radiotherapy (RT) has a role in treatment of it.
Objectives: To show that RT is still the modality of choice in the treatment of NPC, to study modes of presentations, commonest histopathological types and their percentages, to show differences in the sensitivities of these types to RT and to find out a 5 year survival rate(5YSR) and its relation with lymph node involvement.
Methods: This is a retrospective study of 44 patients with NPC who were treated with routine RT from 1988-2007 at the institute of radiology and nuclear medicin

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Facial Emotion Recognition from Videos Using Deep Convolutional Neural Networks
...Show More Authors

Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.

View Publication Preview PDF
Scopus (50)
Crossref (38)
Scopus Crossref
Publication Date
Sun Mar 03 2024
Journal Name
The Science Teacher
Using Scenarios to Assess Student Learning
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Tue Jan 31 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
Survey on intrusion detection system based on analysis concept drift: Status and future directions
...Show More Authors

Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor

... Show More
View Publication
Publication Date
Wed May 10 2023
Journal Name
Biomass Conversion And Biorefinery
Lactic acid-based deep eutectic solvents and activated carbon for soap removal from crude biodiesel
...Show More Authors

View Publication
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Jan 04 2015
Journal Name
Journal Of Educational And Psychological Researches
The Effect of the Problem Based Learning on EFL Learners’ Achievement
...Show More Authors

The present study discusses the problem based learning in Iraqi classroom. This method aims to involve all learners in collaborative activities and it is learner-centered method. To fulfill the aims and verify the hypothesis which reads as follow” It is hypothesized that there is no statistically significant differences between the achievements of Experimental group and control group”. Thirty learners are selected to be the sample of present study.Mann-Whitney Test for two independent samples is used to analysis the results. The analysis shows that experimental group’s members who are taught according to problem based learning gets higher scores than the control group’s members who are taught according to traditional method. This

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 06 2014
Journal Name
Journal Of Educational And Psychological Researches
The Effect of the Problem Based Learning on EFL Learners’ Achievement
...Show More Authors

The present study discusses the problem based learning in Iraqi classroom. This method aims to involve all learners in collaborative activities and it is learner-centered method. To fulfill the aims and verify the hypothesis which reads as follow” It is hypothesized that there is no statistically significant differences between the achievements of Experimental group and control group”. Thirty learners are selected to be the sample of present study.Mann-Whitney Test for two independent samples is used to analysis the results. The analysis shows that experimental group’s members who are taught according to problem based learning gets higher scores than the control group’s members who are taught according to traditional method. This

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 28 2023
Journal Name
Surgical Neurology International
Neurosurgery theater-based learning: Etiquette and preparation tips for medical students
...Show More Authors

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Mar 02 2022
Journal Name
Journal Of Educational And Psychological Researches
King Khalid University towards Strategies Compatible with Brain-Based Learning (BBL)
...Show More Authors

The study aimed to reveal the level of knowledge and tendencies of high- study students specializing in curriculum and teaching methods at King Khalid University towards harmonious strategies with brain-based learning (BBL). And Then, putting a proposed concept to develop knowledge and tendencies of high-study students specializing in curriculum and teaching methods at King Khalid University towards harmonious strategies with Brain-based learning (BBL). For achieving this goal, a cognitive test and a scale of tendency were prepared to apply harmonious strategies with brain-based learning. The descriptive approach was used because it suits the goals of the study. The study sample consisted of (70) male and female students of postgraduate

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref