Preferred Language
Articles
/
kRZnJIwBVTCNdQwCpPjS
3D scenes semantic segmentation using deep learning based Survey
Abstract<p>Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the power and popular tool for data and image processing in computer vision, used for many applications like “image recognition”, “object detection”, “semantic segmentation”, In this research paper, provide survey a background for many techniques designed to 3 Dimensions point cloud semantic segmentation in different domains on many several available free datasets and also making a comparison between these methods.</p>
Scopus Crossref
View Publication
Publication Date
Fri Dec 15 2023
Journal Name
Al-academy
Artistic processing of Emotional Scenes in the Narrative Film

This research entitled: "Artistic processing of Emotional Scenes in the Narrative Film" deals with how to process and embody those emotional scenes. As there are certain filmic elements that play an effective role in deepening the viewer's sense of the importance of those scenes, and that their presence in the film is necessary and inevitable, and cannot be dispensed because it forms an interconnected connection with the rest of the film's scenes, in addition to its dramatic and aesthetic value in the film in crystallizing the viewer's feelings and integrating him/her into the scene.
The research was divided into four chapters, the first chapter includes: the methodological framework, which represented the research problem, and brin

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Mar 25 2019
Journal Name
Al-academy
Motion Scenes Direction Treatment in TV Drama: عشتار حبيب

The sense of motion generates a sense of the subject of action. The movement of the camera, the movement of actors, the movement of colors and lights, and other elements of the visual discourse, work together to enrich the image with a complete dynamic flow to reach the recipient. The research subject has been identified under the title "Motion Scenes Dramatic Treatment   in TV Drama".  The research is divided into an introduction and two theoretical sections in the theoretical framework:

The first section: The motion in TV drama in which the researcher dealt with the concept of motion and its types and the expressive and aesthetic role in television drama. The second section dealt with the elements of the visual a

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Advance Science And Technology
MR Images Classification of Alzheimer's Disease Based on Deep Belief Network Method

Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the

... Show More
Publication Date
Mon Jan 03 2022
Journal Name
Iraqi Journal Of Science
Accuracy Assessment of 3D Model Based on Laser Scan and Photogrammetry Data: Introduction

    A three-dimensional (3D) model extraction represents the best way to reflect the reality in all details. This explains the trends and tendency of many scientific disciplines towards making measurements, calculations and monitoring in various fields using such model. Although there are many ways to produce the 3D model like as images, integration techniques, and laser scanning, however, the quality of their products is not the same in terms of accuracy and detail. This article aims to assess the 3D point clouds model accuracy results from close range images and laser scan data based on Agi soft photoscan and cloud compare software to determine the compatibility of both datasets for several applications. College of Scien

... Show More
Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Feb 24 2022
Journal Name
Journal Of Educational And Psychological Researches
The Effect of using Project - Based Learning method in development intensive reading skills at middle school students

The purpose of this research is to identify the effect of the use of project-based learning in the development of intensive reading skills at middle school students. The experimental design was chosen from one group to suit the nature of the research and its objectives. The research group consisted of 35 students. For the purpose of the research, the following materials and tools were prepared: (List of intensive reading skills, intensive reading skills test, teacher's guide, student book). The results of the study showed that there were statistically significant differences at (0.05) in favor of the post-test performance of intensive reading skills. The statistical analysis also showed that the project-based learning approach has a high

... Show More
View Publication Preview PDF
Publication Date
Sat Nov 28 2020
Journal Name
Iraqi Journal Of Science
Survey Based Study: Classification of Patients with Alzheimer’s Disease

 Neuroimaging is a description, whether in two-dimensions (2D) or three-dimensions (3D), of the structure and functions of the brain. Neuroimaging provides a valuable diagnostic tool, in which a limited approach is used to create images of the focal sensory system by medicine professionals. For the clinical diagnosis of patients with Alzheimer's Disease (AD) or Mild Cognitive Impairs (MCI), the accurate identification of patients from normal control persons (NCs) is critical. Recently, numerous researches have been undertaken on the identification of AD based on neuroimaging data, including images with radiographs and algorithms for master learning. In the previous decade, these techniques were also used slowly to differentiate AD a

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
Scopus (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sat Nov 26 2022
Journal Name
Sensors
3D Object Recognition Using Fast Overlapped Block Processing Technique

Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essentia

... Show More
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 25 2022
Journal Name
Iraqi Journal Of Science
A Modified Segmentation Approach for Real World Images Based on Edge Density Associated with Image Contrast Stretching

Segmentation of real world images considered as one of the most challenging tasks in the computer vision field due to several issues that associated with this kind of images such as high interference between object foreground and background, complicated objects and the pixels intensities of the object and background are almost similar in some cases. This research has introduced a modified adaptive segmentation process with image contrast stretching namely Gamma Stretching to improve the segmentation problem. The iterative segmentation process based on the proposed criteria has given the flexibility to the segmentation process in finding the suitable region of interest. As well as, the using of Gamma stretching will help in separating the

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Cybersecurity And Information Management
Machine Learning-based Information Security Model for Botnet Detection

Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet

... Show More
Scopus (4)
Crossref (2)
Scopus Crossref
View Publication