Preferred Language
Articles
/
kRZnJIwBVTCNdQwCpPjS
3D scenes semantic segmentation using deep learning based Survey
Abstract<p>Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the power and popular tool for data and image processing in computer vision, used for many applications like “image recognition”, “object detection”, “semantic segmentation”, In this research paper, provide survey a background for many techniques designed to 3 Dimensions point cloud semantic segmentation in different domains on many several available free datasets and also making a comparison between these methods.</p>
Scopus Crossref
View Publication
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Estimation of kidney tumor volume in CT images using medical image segmentation techniques

Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fully Automated Magnetic Resonance Detection and Segmentation of Brain using Convolutional Neural Network

     The brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 15 2020
Journal Name
Al-academy
Production Scenes in Television Series: عبد الكريم حسين عباس السوداني

Due to the increase in the number of the satellite channels which resulted from the satellite broadcasting, the demand for the television drama production has increased dramatically, and there has been a significant competitive market, which encouraged the producers to adopt many carrots among them the inclusion of TV series large scenes whose main purpose is to show the volume of the production in the series, let alone achieving the dramatic function. The researcher called this type of scenes (the productive scenes), a name which has not been used before. The researcher studied these scenes and determined his research subject under the title (the production scenes in the TV series) where the research problem has been determined through

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Image encryption based on combined between linear feedback shift registers and 3D chaotic maps

Protecting information sent through insecure internet channels is a significant challenge facing researchers. In this paper, we present a novel method for image data encryption that combines chaotic maps with linear feedback shift registers in two stages. In the first stage, the image is divided into two parts. Then, the locations of the pixels of each part are redistributed through the random numbers key, which is generated using linear feedback shift registers. The second stage includes segmenting the image into the three primary colors red, green, and blue (RGB); then, the data for each color is encrypted through one of three keys that are generated using three-dimensional chaotic maps. Many statistical tests (entropy, peak signa

... Show More
Scopus (3)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Fri Jul 19 2024
Journal Name
An International Journal Of Optimization And Control: Theories &amp; Applications (ijocta)
Design optimal neural network based on new LM training algorithm for solving 3D - PDEs

In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.

Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Fri Mar 31 2023
Journal Name
Wasit Journal Of Computer And Mathematics Science
Security In Wireless Sensor Networks Based On Lightweight Algorithms : An Effective Survey

At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena

... Show More
Crossref
View Publication
Publication Date
Mon Jan 02 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
Publication Date
Tue Aug 27 2024
Journal Name
Tem Journal
Preparing the Electrical Signal Data of the Heart by Performing Segmentation Based on the Neural Network U-Net

Research on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files tha

... Show More
Crossref
View Publication
Publication Date
Sat Jan 03 2015
Journal Name
Journal Of Engineering And Development
3D Presentation for Baghdad University Buildings Using Total Station Device

capable of the measuring with a high degree of precision in a single instrument. Total stations device are used for station setting up, setting-outmany points from one station. Their major purpose of this work is to take advantage of total station for setting up building and to establish 3D representation using AutoCAD program. The area of the study was Civil Engineering Department at Baghdad University campus AL Jadiriyah. The completion of the work is done in two stages; 1. The field work: In this stage, the Total Station Nikon Nivo-5C was selected for the current study. This device was measured horizontal and vertical distance, elevations, and coordinates from a single set up. This data directly stored on memory. 2. The office work: In t

... Show More