Neurosurgery theater-based learning: Etiquette and preparation tips for medical students
...Show More Authors
Background: Scientific education aims to be inclusive and to improve students learning achievements, through appropriate teaching and learning. Problem Based Learning (PBL) system, a student centered method, started in the second half of the previous century and is expanding progressively, organizes learning around problems and students learn about a subject through the experience of solving these problems.Objectives:To assess the opinions of undergraduate medical students regarding learning outcomes of PBL in small group teaching and to explore their views about the role of tutors and methods of evaluation. Type of the study: A cross-sectional study.Methods: This study was conducted in Kerbala Medical Colleges among second year students
... Show MoreThe Coronavirus Disease 2019 (COVID-19) pandemic has caused an unprecedented disruption in medical education and healthcare systems worldwide. The disease can cause life-threatening conditions and it presents challenges for medical education, as instructors must deliver lectures safely, while ensuring the integrity and continuity of the medical education process. It is therefore important to assess the usability of online learning methods, and to determine their feasibility and adequacy for medical students. We aimed to provide an overview of the situation experienced by medical students during the COVID-19 pandemic, and to determine the knowledge, attitudes, and practices of medical students regarding electronic medical education.
... Show MoreIntroduction to Medical Physics for Pharmacy Students and Medical Groups - ISBNiraq.org
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Introduction to Medical and Biological Statistics for Pharmacy Students and Medical Groups (Undergraduate & Postgraduate) - ISBNiraq.org
The derivatives formed after the successive acetylation, esterification and nitration reactions to cholic, deoxycholic, and taurocholic acids were identified to be of the following general strucure: Colt, Where RI=NO3, OH, 0=, or CH3COO. R2=H, NO3, OH, 0-=, or CH3COO. R3=H, NO3,01-1, 0=, or CH3COO. R4=OH, NH(CH2)2S03Na, NH(CH2)2S03H, or OMe. By using U.V-visible and I.R spectrophotometry . The number of hydroxyl groups was determined, purity was checked from T.L.C, Most of these derivatives will find pharmaceutical application.
The purified prepared compounds were identified through different methods of identification i.e, I.R, UV-vi^ble-spectroscopy in addition to (coloured tests) Calculation of the sum of OH groups. TLC techniques were also used to test the purity and the speed ofthe rate of flow (RF).
This paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4
... Show More