The behavior of externally prestressed composite beams under short term loading has been studied. A computer program developed originally by Oukaili to evaluate curvature is modified to evaluate the deflection of prestressed composite beam under flexural load. The analysis model based on the deformation compatibility of entire structure that allows to determine the full history of strain and stress distribution along cross section depth, deflection and stress increment in the external tendons .
The evaluation of curvatures for the composite beam involves iterations for computing the strains vectors at each node at any loading stage. The stress increment determined using equations depended on the member deflection at points of connection. The stress increment determined using equations depended on the member deflection at points of connection. The proposed model results for load –deflection response are compared with experimental data taken from Auyyb's beams. For beams with
straight tendon profile the average discrepancy reached 5.77%, 8.48% and 5.23% corresponding to the 0.25, 0.5 and 0.75 of the maximum load, respectively. For beams with the draped tendon profile, the average discrepancy of the analytical deflections values reached 15.5%, 5.8% and 6.45% corresponding to the 0.25, 0.5 and 0.75 of maximum load, respectively.
The inhibitive action of Phenyl Thiourea (PTU) on the corrosion of mild steel in strong Hydrochloric acid, HCl, has been investigated by weight loss and potentiostatic polarization. The effect of PTU concentration, HCl concentration, and temperature on corrosion rate of mild steel were verified using 2 levels factorial design and surface response analysis through weight loss approach, while the electrochemical measurements were used to study the behavior of mild steel in 5-7N HCl at temperatures 30, 40 and 50 °C, in absence and presence of PTU. It was verified that all variables and their interaction were statistically significant. The adsorption of (PTU) is found to obey the Langmuir adsorption isotherm. The effect of temperature on th
... Show MoreCarbon fibre reinforced polymers are widely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behaviour between CFRP laminates and steel members under impact loading. This paper shows the effect of different load rates from quasi-static to 300 × 103 mm/min on this bond. Two types of CFRP laminate, CFK 150/2000 and CFK 200/2000, were used to strengthen steel joints using Araldite 420 epoxy. The results show a significant bond strength enhancemen
... Show MoreThe design, construction and investigation of experimental study of two compound parabolic concentrators (CPCs) with tubular absorber have been presented. The performance of CPCs have been evaluated by using outdoor experimental measurements including the instantaneous thermal efficiency. The two CPCs are tested instantly by holding them on a common structure. Many tests are conducted in the present work by truncating one of them in three different levels. For each truncation the acceptance half angle (θc) was changed. Geometrically, the acceptance half angle for standard CPC is (26o). For the truncation levels for the other CPC 1, 2 and 3 the acceptance half angle were 20o, 26o and 5
... Show MoreAbstract
Theoretical and experimental methodologies were assessed to test curved beam made of layered composite material. The maximum stress and maximum deflection were computed for each layer and the effect of radius of curvature and curve shape on them. Because of the increase of the use of composite materials in aircraft structures and the renewed interest in these types of problems, the presented theoretical assessment was made using three different approaches: curved beam theory and an approximate 2D strength of material equations and finite element method (FEM) analysis by ANSYS 14.5 program for twelve cases of multi-layered cylindrical shell panel differs in fibe
... Show MoreIn this study, the preparation and characterization of hyacinth plant /chitosan composite, as a heavy metal removal, were done. Water hyacinth plant (Eichhorniacrasspes) was collected from Tigris river in Baghdad. The root and shoot parts of plant were ground to powder. Composite materials were prepared at different ratios of plant part (from 2.9% to 30.3%, wt /wt) which corresponds to (30-500mg) of hyacinth plant (root and shoot) and chitosan. The results showed that all examined ratios of plant parts have an excellent absorption to copper (Cu (II)). Moreover, it was observed that 2.9% corresponds (30mg) of plant root revealed highest removal (82.7%) of Pb (II), while 20.23% of shoot removed 61% of Cd (II) within 24 hr
... Show MoreBackground: Radiopacity is one of the prerequisites for dental materials, especially for composite restorations. It's essential for easy detection of secondary dental caries as well as observation of the radiographic interface between the materials and tooth structure. The aim of this study to assess the difference in radiopacity of different resin composites using a digital x-ray system. Materials and methods: Ten specimens (6mm diameter and 1mm thickness) of three types of composite resins (Evetric, Estelite Sigma Quick,and G-aenial) were fabricated using Teflon mold. The radiopacity was assessed using dental radiography equipment in combination with a phosphor plate digital system and a grey scale value aluminum step wedge with thickness
... Show MorePoly urea formaldehyde –Bentonite (PUF-Bentonite) composite was tested as new adsorbent
for removal of mefenamic acid (MA) from simulated wastewater in batch adsorption
procedure. Developed a method for preparing poly urea formaldehyde gel in basic media by
using condensation polymerization. Adsorption experiments were carried out as a function of
water pH, temperature, contact time, adsorbent dose and initial MA concentration .Effect of
sharing surface with other analgesic pharmaceuticals at different pH also studied. The
adsorption of MA was found to be strongly dependent to pH. The Freundlich isotherm model
showed a good fit to the equilibrium adsorption data. From Dubinin–Radushkevich model the
mean free
To decrease the dependency of producing high octane number gasoline on the catalytic processes in petroleum refineries and to increase the gasoline pool, the effect of adding a suggested formula of composite blending octane number enhancer to motor gasoline composed of a mixture of oxygenated materials (ethanol and ether) and aromatic materials (toluene and xylene) was investigated by design of experiments made by Mini Tab 15 statistical software. The original gasoline before addition of the octane number blending enhancer has a value of (79) research octane number (RON). The design of experiments which study the optimum volumetric percentages of the four variables, ethanol, toluene, and ether and xylene materials leads
... Show MoreTernary polymer blend of chitosan/poly vinyl alcohol/ poly vinyl pyrrolidone was prepared by solution castingmethod, nanocomposite was prepared by sonication method with nano Ag and Zn. All prepared compounds have been characterizedby FT-IR, SEM, DSC, as well as Biological activity. Antimicrobialactivity related to prepared blendsand Nanocomposites againstsix types of bacteria namely, Staphylococcus aureas, E. faecalis, S.typhi, P. aeruginosa, Bacillus subtilis, Escherichia coli andC. albicans fungal were examined and evaluated. The results reveal that the prepared polymer blends and nanocompositeshavegood antimicrobial activity against all kinds of microbials.