Preferred Language
Articles
/
joe-1922
Serviceability Performance of Externally Prestressed Steel-Concrete Composite Girders
...Show More Authors

The behavior of externally prestressed composite beams under short term loading has been studied. A computer program developed originally by Oukaili to evaluate curvature is modified to evaluate the deflection of prestressed composite beam under flexural load. The analysis model based on the deformation compatibility of entire structure that allows to determine the full history of strain and stress distribution along cross section depth, deflection and stress increment in the external tendons .
The evaluation of curvatures for the composite beam involves iterations for computing the strains vectors at each node at any loading stage. The stress increment determined using equations depended on the member deflection at points of connection. The stress increment determined using equations depended on the member deflection at points of connection. The proposed model results for load –deflection response are compared with experimental data taken from Auyyb's beams. For beams with
straight tendon profile the average discrepancy reached 5.77%, 8.48% and 5.23% corresponding to the 0.25, 0.5 and 0.75 of the maximum load, respectively. For beams with the draped tendon profile, the average discrepancy of the analytical deflections values reached 15.5%, 5.8% and 6.45% corresponding to the 0.25, 0.5 and 0.75 of maximum load, respectively.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jul 27 2023
Journal Name
Buildings
Structural Behavior of Reactive Powder Concrete under Harmonic Loading
...Show More Authors

Industrial buildings usually are designed to sustain several types of load systems, such as dead, live, and dynamic loads (especially the harmonic load produced by rotary motors). In general, these buildings require high-strength structural elements to carry the applied loads. Moreover, Reactive Powder Concrete (RPC) has been used for this purpose because of its excellent mechanical strength and endurance. Therefore, this study provides an experimental analysis of the structural behaviors of reinforced RPC beams under harmonic loads. The experimental program consisted of testing six simply supported RPC beams with lengths of 1500 mm, widths of 150 mm, and thicknesses of 200 mm under harmonic loading with varied frequencies between 1

... Show More
View Publication
Scopus (4)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Thu Jul 27 2023
Journal Name
Buildings
Structural Behavior of Reactive Powder Concrete under Harmonic Loading
...Show More Authors

Industrial buildings usually are designed to sustain several types of load systems, such as dead, live, and dynamic loads (especially the harmonic load produced by rotary motors). In general, these buildings require high-strength structural elements to carry the applied loads. Moreover, Reactive Powder Concrete (RPC) has been used for this purpose because of its excellent mechanical strength and endurance. Therefore, this study provides an experimental analysis of the structural behaviors of reinforced RPC beams under harmonic loads. The experimental program consisted of testing six simply supported RPC beams with lengths of 1500 mm, widths of 150 mm, and thicknesses of 200 mm under harmonic loading with varied frequencies between 1

... Show More
Scopus (4)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Rehabilitation of Reinforced Concrete Deep Beam by Epoxy Resin
...Show More Authors

This investigation presents an experimental and analytical study on the behavior of reinforced concrete deep beams before and after repair. The original beams were first loaded under two points load up to failure, then, repaired by epoxy resin and tested again. Three of the test beams contains shear reinforcement and the other two beams have no shear reinforcement. The main variable in these beams was the percentage of longitudinal steel reinforcement (0, 0.707, 1.061, and 1.414%). The main objective of this research is to investigate the possibility of restoring the full load carrying capacity of the reinforced concrete deep beam with and without shear reinforcement by using epoxy resin as the material of repair. All be

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 29 2018
Journal Name
Al-khwarizmi Engineering Journal
Surface Roughness Prediction for Steel 304 In Edm Using Response Graph Modeling
...Show More Authors

Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Aci Structural Journal
Stress at Ultimate in Internally Unbonded Steel Based on Genetic Expression Programming
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Composite Structures
Bond behaviour between CFRP laminates and steel members under different loading rates
...Show More Authors

Carbon fibre reinforced polymers are widely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behaviour between CFRP laminates and steel members under impact loading. This paper shows the effect of different load rates from quasi-static to 300 × 103 mm/min on this bond. Two types of CFRP laminate, CFK 150/2000 and CFK 200/2000, were used to strengthen steel joints using Araldite 420 epoxy. The results show a significant bond strength enhancemen

... Show More
Scopus (73)
Crossref (61)
Scopus Clarivate Crossref
Publication Date
Sat Jun 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Phenyl Thiourea as Corrosion Inhibitor for Mild Steel in Strong Hydrochloric Acid
...Show More Authors

The inhibitive action of Phenyl Thiourea (PTU) on the corrosion of mild steel in strong Hydrochloric acid, HCl, has been investigated by weight loss and potentiostatic polarization. The effect of PTU concentration, HCl concentration, and temperature on corrosion rate of mild steel were verified using 2 levels factorial design and surface response analysis through weight loss approach, while the electrochemical measurements were used to study the behavior of mild steel in 5-7N HCl at temperatures 30, 40 and 50 °C, in absence and presence of PTU. It was verified that all variables and their interaction were statistically significant. The adsorption of (PTU) is found to obey the Langmuir adsorption isotherm. The effect of temperature on th

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Istanbul Bridge Conference.- Turkey
Strengthening and Load Testing for Short Span Steel Bridge for Abnormal Loads
...Show More Authors

The steel jetty selected for strengthening is in Baghdad city, over Tigris River, consists of 55 short spans, each of approximately 4 meters and one naviga-tional opening of 12 m. The bridge is 224 meters length and 8 meters in width. The strengthening system was designed to remove overstresses that occurred when the bridge was subjected to abnormal loads of 380 tons. A strengthening system which installed in spring 2008 was used where the main concept is to depend on added side supporting elements which impose reversal forces on the bridge to counteract most of the loads expected from the abnormal heavy loads. The bridge was load tested before and after the strengthening system was activated. The load test results indicate that the strengt

... Show More
Publication Date
Thu Jun 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Characterization of Delamination Effect on Free Vibration of Composite Laminates Plate Using High Order Shear Deformation Theory
...Show More Authors

 A dynamic analysis method has been developed to investigate and characterize embedded delamination on the dynamic response of composite laminated structures. A nonlinear finite element model for geometrically large amplitude free vibration intact plate and delamination plate analysis is presented using higher order shear deformation theory where the nonlinearity was introduced  in the Green-Lagrange sense. The governing equation of the vibrated plate were derived using the Variational approach. The effect of different orthotropicity ratio, boundary condition and delamination size on the non-dimenational fundamental frequency and frequency ratios of plate for different stacking sequences are studied. Finally th

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 17 2025
Journal Name
African Journal Of Biomedical Research
Digital Evaluation of Cuspal Deflection of Endodontically Treated Teeth Restored with Resin Composite and Different Fiber Formulations
...Show More Authors

Background: This study evaluated the influence of different fiber formulations incorporation in resin composite on cuspal deflection (CD) of endodontically-treated teeth with mesio-occluso-distal (MOD) cavities. Materials and Methods: Thirty-two freshly extracted maxillary premolar teeth received MOD cavity preparation followed by endodontic treatment using single cone obturation technique, and divided into: Group I: direct composite resin only using a centripetal technique, Group II: direct composite resin with short fiber-reinforced composite (everX Flow), Group III: direct composite resin with leno wave ultra-high molecular weight polyethylene (LWUHMWPE) fibers placed on the cavity floor, and Group IV: direct composite resin with LWUHMWP

... Show More
Preview PDF